• Title/Summary/Keyword: Neighborhood Electric Vehicles (NEVs)

Search Result 3, Processing Time 0.016 seconds

A Study on Development of 1.5 [kW] Low-cost Battery Charger for NEVs(Neighborhood Electric Vehicles) (NEV용 1.5[kW]급 저가형 충전기 개발에 관한 연구)

  • Lee, Chan-Song;Jeong, Jin-Beom;Lee, Baek-Haeng;Hur, Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.4
    • /
    • pp.574-579
    • /
    • 2012
  • In this paper, the battery charger developed which is satisfy by the characteristics of the rapid control and reduce the cost of the charger. analog-digital mixed mode controller developed with dedicated IC for PWM control and low-performance micro-processor is using for the operation control of charger. The low-cost NEV charger developed to verify the performance and usability is verified with charging battery experiment by of using developed charger.

Design and Fabrication of Single-person Neighborhood Electric Vehicle with Streamlined Car Body (유선형 차체가 적용된 1인용 저속 전기 자동차의 설계 및 제작)

  • Na, Yeong-min;Park, Jong-kyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.4
    • /
    • pp.55-63
    • /
    • 2018
  • In recent years, with the growing interest in electric vehicles, the development of a Neighborhood Electronic Vehicle (NEV) made for urban driving is accelerating. Existing NEVs are set to ~0.3 - 0.35 with more emphasis on performance rather than minimizing air resistance. In this paper, a NEV with a streamlined car body is proposed. The shape of dolphins and sharks was applied to the car body to minimize the air resistance generated when driving. Also, the performance of the vehicle was estimated by calculating the traction force and the roll couple, etc. To check the drag coefficient of the car body, finite element analysis software (COMSOL Multiphysics) was used. The frame of the vehicle is divided into the forward and the rear parts. Carbon pipe is used for the frame by MIG welding. The car body of the vehicle was fabricated by forming carbon fiber. This study confirmed the general possibility of using NEVs through driving experiments.

The Effect Analysis of NEV(Neighborhood Electric Vehicle) Driving - with VISSIM Simulation - (저속형 전기자동차 주행시 시스템 영향분석 - VISSIM 시뮬레이션을 이용하여 -)

  • Yoon, Tae-Kwan;Baik, Nam-Cheol;Jung, In-Taek
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.2
    • /
    • pp.77-82
    • /
    • 2012
  • To share the lanes with conventional vehicles, traffic operation strategy is needed for NEV (Neighborhood Electric Vehicle). Because NEV cannot accelerate sharply as fast as common car include gasoline, diesel and LPG cars, they may interrupt traffic conditions and make traffic delay. After green lights turn on, all vehicles run through the street including NEV, but NEV have a maximum speed which is 50km/h. It can be an obstacle for following vehicles and will make traffic delay of the intersection. In this reason, we need to organize traffic systems like queue jump with priority traffic signal. To analyze the necessity for NEV road operations, we simulate three scenarios in congested and non-congested conditions. First is that we examine the condition which is mixed NEV and cars on the road, the second one is that we set up lane only NEV can accepted in simulation and last one is making queue jump lane and providing priority signal for NEV. In conclusion, we can conclude that making lane only for NEV is effective to improve travel speed when rate of NEVs is over 20%. Also queue jump lane and priority signal cannot make good effect to intersection delay and average speed.