• Title/Summary/Keyword: Negative temperature coefficient

Search Result 245, Processing Time 0.022 seconds

Microwave Dielectric Properties of the MST Ceramics with Addition of Ce (Ce첨가에 따른 MST 세라믹스의 마이크로파 유전특성)

  • 최의선;박인길;배선기;이영희
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.430-433
    • /
    • 2001
  • The 0.96MgTiO$_3$-0.04SrTiO$_3$+xCe(x=0∼1.6 wt%) ceramics were fabricated by the conventional mixed oxide method. The sintering temperature and time were 1300$^{\circ}C$, 2hr., respectively. From the X-ray diffraction patterns, it was found that the perovskite SrTiO$_3$ and ilmenite MgTiO$_3$ structures were coexisted in the 0.96MgTiO$_3$-0.04SrTiO$_3$+xCe(x=0∼1.6 wt%) ceramics. The dielectric constant($\varepsilon$$\sub$r/) was increased with addition of Ce. The temperature coefficient of resonant frequency($\tau$$\sub$f/) was gradually varied from positive value to the negative value with increasing the Ce. The temperature coefficient of resonant frequency of the 0.96MgTiO$_3$-0.04SrTiO$_3$+0.2Ce ceramics was near zero, where the dielectric constant, quality factor, and $\tau$$\sub$f/ were 20.68, 50, 272 and -0.5pm/$^{\circ}C$, respectively.

  • PDF

Dielectric, Piezoelectric Properties and Temperature Stability of Resonant Frequency in PSN-PMN-PZT Ceramics (PSN-PMN-PZT 세라믹스의 유전 및 압전 특성과 공진 주파수의 온도안정성)

  • 윤광희;류주현;민석규;이명수;서성재
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.391-395
    • /
    • 2000
  • In this study, the temperature coefficient of resonant frequency(TC $F_{r}$), dielectric and piezoelectric properties of Pb[(S $b_{1}$2/N $b_{1}$2/)$_{0.0035}$-(M $n_{1}$3/N $b_{2}$3/)$_{0.0065}$-(Z $r_{x}$ $Ti_{1-x}$ )$_{0.90}$] $O_3$ceramics is investigated with Zr/Ti ratio. The dielectric constant and electromechanical coupling factor( $k_{p}$) showed the highest values of 1257, 0.562 respectively when the Zr/Ti ratio is 49.5/50.5. The mechanical quality factor( $Q_{m}$) is the lowest value of 713 when the Zr/Ti ratio is 49.5/50.5, and increased with the decrease of the Zr/Ti ratio. The temperature coefficient of resonant frequency(TC $F_{r}$) change abruptly at the morphotropic phase boundary(MPB), which is between the rhombohedral phase with highly negative TC $F_{r}$ of -106ppm/$^{\circ}C$ and the tetragonal phase with highly positive TC $F_{r}$ of +64pp $m^{\circ}C$ as Zr/Ti ratio changes from 50/50 to 49.5/50.5.50.5..5.50.5.5.

  • PDF

Microwave Dielectric Properties of $(Zr_{0.65}Sn_{0.35})Ti_{1.04}O_4$ Ceramics according to Doped NiO and Sintering Temperature ($(Zr_{0.65}Sn_{0.35})Ti_{1.04}O_4$ 세라믹스의 NiO 첨가량 및 소결온도에 따른 고주파 유전특성)

  • Yun, J.R.;Heung, S.Y.;Lee, H.Y.;Kweon, J.Y.;Kim, K.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1487-1489
    • /
    • 1994
  • $(Zr_{0.65}Sn_{0.35})Ti_{1.04}O_4$ system which has a dielectric constant, low dielectric loss and temperature coefficient was investigated. Temperature coefficient varied from positive to negative with increasing of NiO. For the NiO content 1.0wt%. i.e $(Zr_{0.65}Sn_{0.35})Ti_{1.04}O_4$, the ceramic showed very good dielectric properties such as ${\epsilon}$=37.8, $Q{\times}f_o=49.000$ and ${\tau}_r= 4{\pm}1ppm/^{\circ}C$.

  • PDF

Development of Electroconductive SiC Ceramic Heater by Spark Plasma Sintering (방전플라즈마 소결에 의한 자기 통전식 SiC계 세라믹 발열체 개발)

  • Shin, Yong-Deok;Choi, Won-Seok;Ko, Tae-Hun;Lee, Jung-Hoon;Ju, Jin-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.4
    • /
    • pp.770-776
    • /
    • 2009
  • The composites were fabricated by adding 0, 15, 30, 45[vol.%] $ZrB_2$ powders as a second phase to SiC matrix. The physical, mechanical and electrical properties of electroconductive SiC ceramic composites by spark plasma sintering(SPS) were investigated. Reactions between ${\beta}$-SiC and $ZrB_2$ were not observed in the XRD and the phase analysis of the electroconductive SiC ceramic composites. The relative density of mono ${\beta}$-SiC, ${\beta}$-SiC+15[vol.%]$ZrB_2$, ${\beta}$-SiC+30[vol.%]$ZrB_2$ and ${\beta}$-SiC+45[vol.%]$ZrB_2$ composites are respectively 99.24[%], 87.53[%], 96.41[%] and 98.11[%] Phase analysis of the electroconductive SiC ceramic composites by XRD revealed mostly of ${\beta}$-SiC, $ZrB_2$ and weakly of $ZrO_2$ phase. The flexural strength showed the lowest of 114.44[MPa] for ${\beta}$-SiC+15[vol.%]$ZrB_2$ powders and showed the highest of 210.75[MPa] for composite no added with $ZrB_2$ powders at room temperature. The trend of the mechanical properties of the electroconductive SiC ceramic composites is accorded with the trend of the relative density. The electrical resistivity of the electroconductive SiC ceramic composites decreased with increased $ZrB_2$ contents. The electrical resistivity of mono ${\beta}$-SiC, ${\beta}$-SiC+15[vol.%]$ZrB_2$, ${\beta}$-SiC+30[vol.%]$ZrB_2$ and ${\beta}$-SiC+45[vol.%]$ZrB_2$ composites are respectively $4.57{\times}10^{-1},\;2.13{\times}10^{-1},\;2.68{\times}10^{-2}\;and\;1.99{\times}10^{-2}[{\Omega}{\cdot}cm]$ at room temperature. The electrical resistivity of mono ${\beta}$-SiC and ${\beta}$-SiC+15[vol.%]$ZrB_2$ are negative temperature coefficient resistance(NTCR) in temperature ranges from $25[^{\circ}C]\;to\; 100[^{\circ}C]$. The electrical resistivity of ${\beta}$-SiC+30[vol.%]$ZrB_2$ and ${\beta}$-SiC+45[vol.%]ZrB_2$ are positive temperature coefficient resistance(PTCR) in temperature ranges from $25[^{\circ}C]\;to\;100[^{\circ}C]$. It is convinced that ${\beta}$-SiC+30[vol.%]$ZrB_2$ composites by SPS for heater or ignitors can be applied.

Microwave Dielectric Properties of the (1-x)Mg$TiO_3$-xSr$TiO_3$(x=0.02~0.08)Ceramics with Sintering Temperature (소결온도에 따른 (1-x)Mg$TiO_3$-xSr$TiO_3$(x=0.02~0.08)세라믹스의 마이크로파 유전특성)

  • Choi, Eui-Sun;Lee, Sung-Gap;Bae, Seon-Gi;Lee, Young-Hie
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.12
    • /
    • pp.1011-1016
    • /
    • 2000
  • The (1-x)MgTi $O_3$-xSrTi $O_3$(x=0.02~0.08) ceramics were fabricated by the conventional mixed oxide method. The sintering temperature and time were 125$0^{\circ}C$~1375$^{\circ}C$ and 2hours. The structure and microwave dielectric properties were investigated with sintering temperature and composition ratio. From the X-ray diffraction patterns, the cubic SrTi $O_3$and hexagonal MgTi $O_3$structures were coexisted in the (1-x)MgTi $O_3$-xSrTi $O_3$(x=0.02~0.08) ceramics. The dielectric constant($\varepsilon$$_{r}$) was increased and the temperature coefficient of resonant frequency($\tau$$_{f}$)was decreased with addition of SrTi $O_3$. The temperature coefficient of resonant frequency($\tau$$_{f}$) was gradually varied from negative value to positive value with increasing SrTi $O_3$. In the case of 0.96MgTi $O_3$-0.04SrTi $O_3$ceramics sintered at 130$0^{\circ}C$, the dielectric constant, quality factor and temperature coefficient of resonant frequency were 20.5, 5918(at 7.33GHz) and +10ppm/$^{\circ}C$, respectively.y.y.y.

  • PDF

Studies on Negative Thermal Expansion in $SrA1_2(BO_3)_2O$ Compound ($SrA1_2(BO_3)_2O$ 화합물에 있어서 열적 수축성 연구)

  • 장기석;이영건;오원균;한범수;더글라스케슬러
    • Korean Journal of Crystallography
    • /
    • v.14 no.1
    • /
    • pp.7-12
    • /
    • 2003
  • The compound SrA1₂(BO₃)₂O is a good host lattice for negative thermal expansion. We have measured thermal expansion over the limited temperature range by X-ray diffraction and ceramic dilatometry. In the aluminum borate compound, a thermal contraction is observed with a coefficient -1.64×10/sup -4/ Å/℃ on the c axis in the temperature range 23∼215℃ and with a maximum change -1.75㎛ in length of a ceramic bar of 20㎜ in the temperature range 110∼170℃, respectively.

Measurement of the Moderator Temperature Coefficient of Reactivity for Pressurized Water Reactors

  • Yu, Sung-Sik;Kim, Se-Chang;Na, Young-Whan;Kim, H. S.;J. Y. Doo;Kim, D. K.;S. W. Long
    • Nuclear Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.488-499
    • /
    • 1997
  • The measurements of the moderator temperature coefficient (MTC) are performed to demonstrate that the calculational model produces results that are consistent with the measurements. Since negative MTC is also a technical specification value that may limit the cycle length, it is important to measure it as accurately as possible. In this report, preferred choice of test method depending on the time in cycle, best power indication and temperature definition in MTC calculation were determined based on the MTC test results taken during initial startup testing and at 2/3 cycle burnup in the Yonggwang nuclear power plant. The results show that the ratio and rodded methods provided good agreement with the predictions during initial startup testing. However, near end-of-cycle the depletion method gives better results, and so is suggested to be used in the MTC measurements at 2/3 cycle burnup. The use of primary Delta T power as a power indicator in the MTC calculations is highly advisable since it responds with good consistent results very quickly to changes unlike secondary calorimetric power. For the appropriate temperature definitions used in the MTC calculations, it is considered that the arithmetic average temperature measured simply by inlet and outlet thermocouples is preferred. Although volumetric average temperature provides better results, the improvement is not sufficient to compensate for the simplicity of calculations by arithmetic average temperature.

  • PDF

Electrical Properties and Electromagnetic Shielding Effectiveness of Milled Carbon Fiber/Nylon Composites (분쇄형 탄소 섬유/나일론 복합재료의 전기적 성질과 전자파 차폐 효율)

  • 김창제;최형도;서광석;윤호규
    • Polymer(Korea)
    • /
    • v.27 no.3
    • /
    • pp.201-209
    • /
    • 2003
  • DC and AC electrical conductivity and electromagnetic interference shielding effectiveness of milled carbon fiber/nylon composites were investigated with the kind of nylon matrix. Percolation transition at which the conductivity is sharply increased was observed at about 7 vol% of milled carbon fiber. Nylon 46 as a matrix was more effective to obtain high electrical conductivity than nylon 6, and the difference in conductivity was occurred by the treatment of coupling agent. Frequency dependence of AC conductivity could be explained by relaxation phenomenon at just below percolation and resonance phenomenon at 40 vol% of carbon fiber, respectively. Negative temperature coefficient phenomenon was found in all composites. Electromagnetic interference shielding effectiveness was increased with the concentration of carbon fiber. At a high conductivity region the return loss was more dominant to the total shielding effectiveness than the absorption loss.

A Reduced-Boron OPR1000 Core Based on the BigT Burnable Absorber

  • Yu, Hwanyeal;Yahya, Mohd-Syukri;Kim, Yonghee
    • Nuclear Engineering and Technology
    • /
    • v.48 no.2
    • /
    • pp.318-329
    • /
    • 2016
  • Reducing critical boron concentration in a commercial pressurized water reactor core offers many advantages in view of safety and economics. This paper presents a preliminary investigation of a reduced-boron pressurized water reactor core to achieve a clearly negative moderator temperature coefficient at hot zero power using the newly-proposed "Burnable absorber-Integrated Guide Thimble" (BigT) absorbers. The reference core is based on a commercial OPR1000 equilibrium configuration. The reduced-boron ORP1000 configuration was determined by simply replacing commercial gadolinia-based burnable absorbers with the optimized BigT-loaded design. The equilibrium cores in this study were directly searched via repetitive Monte Carlo depletion calculations until convergence. The results demonstrate that, with the same fuel management scheme as in the reference core, application of the BigT absorbers can effectively reduce the critical boron concentration at the beginning of cycle by about 65 ppm. More crucially, the analyses indicate promising potential of the reduced-boron OPR1000 core with the BigT absorbers, as its moderator temperature coefficient at the beginning of cycle is clearly more negative and all other vital neutronic parameters are within practical safety limits. All simulations were completed using the Monte Carlo Serpent code with the ENDF/B-VII.0 library.

Reactivity balance for a soluble boron-free small modular reactor

  • van der Merwe, Lezani;Hah, Chang Joo
    • Nuclear Engineering and Technology
    • /
    • v.50 no.5
    • /
    • pp.648-653
    • /
    • 2018
  • Elimination of soluble boron from reactor design eliminates boron-induced reactivity accidents and leads to a more negative moderator temperature coefficient. However, a large negative moderator temperature coefficient can lead to large reactivity feedback that could allow the reactor to return to power when it cools down from hot full power to cold zero power. In soluble boron-free small modular reactor (SMR) design, only control rods are available to control such rapid core transient. The purpose of this study is to investigate whether an SMR would have enough control rod worth to compensate for large reactivity feedback. The investigation begins with classification of reactivity and completes an analysis of the reactivity balance in each reactor state for the SMR model. The control rod worth requirement obtained from the reactivity balance is a minimum control rod worth to maintain the reactor critical during the whole cycle. The minimum available rod worth must be larger than the control rod worth requirement to manipulate the reactor safely in each reactor state. It is found that the SMR does have enough control rod worth available during rapid transient to maintain the SMR at subcritical below k-effectives of 0.99 for both hot zero power and cold zero power.