• Title/Summary/Keyword: Negative binomial regression

Search Result 167, Processing Time 0.026 seconds

The study on the determinants of the number of job changes (중소기업 청년인턴 이직횟수 결정요인 분석)

  • Park, Sungik;Ryu, Jangsoo;Kim, Jonghan;Cho, Jangsik
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.2
    • /
    • pp.387-397
    • /
    • 2015
  • In this paper, the determinants of the number of job changes in the SMEs (small and medium enterprises) youth-intern project is analysed, utilizing SMEs youth-intern DB and employment insurance DB. Since the number of job changes are count data which take integer values other than negative values, general linear regression analysis becomes inappropriate. Therefore, four models such as Poisson regression model, zero inflated Poisson regression model, negative binomial regression model and zero inflated negative binomial regression model are tried to fit count data. A zero inflated negative binomial regression model is selected to be the best model. Major results are the followings. First, the number of job changes is shown to be significantly smaller in the treatment group than in the control group. Second, the number of job changes turns out to be significantly smaller in the young-age group than in the old-age group. Third, it is also shown that the number of job changes of man is significantly greater than that of woman. Lastly, the number of job changes in the bigger firm is shown to be significantly less than that of the smaller firm.

A Study on Impact of Factors Influencing Maritime Freight Rates Using Poisson and Negative Binomial Regression Analysis on Blank Sailings of Shipping Companies (포아송 및 음이항 회귀분석을 이용한 해상운임 결정요인이 해운선사의 블랭크 세일링에 미치는 영향 분석 연구)

  • Won-Hyeong Ryu;Hyung-Sik Nam
    • Journal of Navigation and Port Research
    • /
    • v.48 no.1
    • /
    • pp.62-77
    • /
    • 2024
  • In the maritime shipping industry, imbalance between supply and demand has persistently increased, leading to the utilization of blank sailings by major shipping companies worldwide as a key means of flexibly adjusting vessel capacity in response to shipping market conditions. Traditionally, blank sailings have been frequently implemented around the Chinese New Year period. However, due to unique circumstances such as the global pandemic starting in 2020 and trade tensions between the United States and China, shipping companies have recently conducted larger-scale blank sailings compared to the past. As blank sailings directly impact freight transport delays, they can have negative repercussions from perspectives of both businesses and consumers. Therefore, this study employed Poisson regression models and negative binomial regression models to analyze the influence of maritime freight rate determinants on shipping companies' decisions regarding blank sailings, aiming to proactively address potential consequences. Results of the analysis indicated that, in Poisson regression analysis for 2M, significant variables included global container shipping volume, container vessel capacity, container ship scrapping volume, container ship newbuilding index, and OECD inflation. In negative binomial regression analysis, ocean alliance showed significance with global container shipping volume and container ship order volume, the alliance with container ship capacity and interest rates, non-alliance with international oil prices, global supply chain pressure index, container ship capacity, OECD inflation, and total alliance with container ship capacity and interest rates.

A Study for Influence of Sun Glare Effect on Traffic Safety at Tunnel Hood (직광에 의한 눈부심 현상이 터널 출구부 안전성에 미치는 영향 연구)

  • Kim, Youngrok;Kim, Sangyoup;Choi, Jaisung;Lee, Daesung
    • International Journal of Highway Engineering
    • /
    • v.14 no.6
    • /
    • pp.103-110
    • /
    • 2012
  • PURPOSES : In Korea, over 70 percent of the land consists of mountainous and rolling area. Thus, tunnels continue its upward trend as road network are extended. In these circumstances, the importance of tunnel has been increased nowadays and then its safety investigation and research should be performed. This study is focus on confirming and improving the safety of tunnel. On tunnel hood, sunglare effect can irritate driver's behavior instantly and this can result in incident. METHODS : The study of this phenomenon is rarely conducted in domestic and foreign papers, so there is no proper measure for this. This study analyzes the driving environment of the effect of sunglare effect on tunnel hood. RESULTS : Traffic accidents stem from complex set of factors. This study build the Traffic Accident Prediction Models to find out the effect of sunglare effect on tunnel's hood. The independent variables are traffic volume, geometric design of road, length of tunnel and road side environment. Using these variables, this model estimates accident frequency on tunnel hood by Poisson regression model and Negative binomial regression model. Although Poisson regression model have more proper goodness of fit than Negative binomial regression model, Poisson regression model has overdipersion problem. So the Negative binomial regression model is used in this analysis. CONCLUSIONS : Consequently, the model shows that sunglare effect can play a role in driving safety on tunnel hood. As a result, the information of sunglare effect should be noticed ahead of tunnel hood so this can prevent drivers from being in hazard situation.

Developing Rear-End Collision Models of Roundabouts in Korea (국내 회전교차로의 추돌사고 모형 개발)

  • Park, Byung Ho;Beak, Tae Hun
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.6
    • /
    • pp.151-157
    • /
    • 2014
  • This study deals with the rear-end collision at roundabouts. The purpose of this study is to develop the accident models of rear-end collision in Korea. In pursuing the above, this study gives particular attention to developing the appropriate models using Poisson, negative binomial model, ZAM, multiple linear and nonlinear regression models, and statistical analysis tools. The main results are as follows. First, the Vuong statistics and overdispersion parameters indicate that ZIP is the most appropriate model among count data models. Second, RMSE, MPB, MAD and correlation coefficient tests show that the multiple nonlinear model is the most suitable to the rear-end collision data. Finally, such the independent variables as traffic volume, ratio of heavy vehicle, number of circulatory roadway lane, number of crosswalk and stop line are adopted in the optimal model.

Traffic Accident Models of 3-Legged Signalized Intersections in the Case of Cheongju (3지 신호교차로의 교통사고 발생모형 - 청주시를 사례로 -)

  • Park, Byung-Ho;Han, Sang-Uk;Kim, Tae-Young
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.2
    • /
    • pp.94-99
    • /
    • 2009
  • This study deals with the traffic accidents at the 3-legged signalized intersections in Cheongu. The goals are to analyze the geometric, traffic and operational conditions of intersections and to develop a various functional forms that predict the accidents. The models are developed through the correlation analysis, the multiple linear, the multiple nonlinear, Poisson and negative binomial regression analysis. In this study, two multiple linear, two multiple nonlinear and two negative binomial regression models were calibrated. These models were all analyzed to be statistically significant. All the models include 2 common variables(traffic volume and lane width) and model-specific variables. These variables are, therefore, evaluated to be critical to the accident reduction of Cheongju.

Estimating the Economic Value of the Songieong Beach Using A Count Data Model: - Off-season Estimating Value of the Beach - (가산자료모형을 이용한 송정 해수욕장의 경제적 가치추정: - 비수기 해수욕장의 가치추정 -)

  • Heo, Yun-Jeong;Lee, Seung-Lae
    • The Journal of Fisheries Business Administration
    • /
    • v.38 no.2
    • /
    • pp.79-101
    • /
    • 2007
  • The purpose of this study is to estimate the economic value of the Songieong Beach in Off-season, using a Individual Travel Cost Model(ITCM). Songieong Beach is located in Busan but far away from city. These days, however, the increased rate of traffic inflow to the Songieong beach and the five-day working week are reflected in the trend analysis. Moreover, people have changed psychological value. For that reason, visitors are on the increase on the beach in off-season. The ITCM is applied to estimate non-market value or environmental Good like a Contingent Valuation Method and Hedonic Price Model etc. The ITCM was derived from the Count Data Model(i.e. Poisson and Negative Binomial model). So this paper compares Poisson and negative binomial count data models to measure the tourism demands. The data for the study were collected from the Songjeong Beach on visitors over the a week from November 1 through November 23, 2006. Interviewers were instructed to interview only individuals. So the sample was taken in 113. A dependent variable that is defined on the non-negative integers and subject to sampling truncation is the result of a truncated count data process. This paper analyzes the effects of determinants on visitors' demand for exhibition using a class of maximum-likelihood regression estimators for count data from truncated samples, The count data and truncated models are used primarily to explain non-negative integer and truncation properties of tourist trips as suggested by the economic valuation literature. The results suggest that the truncated negative binomial model is improved overdispersion problem and more preferred than the other models in the study. This paper is not the same as the others. One thing is that Estimating Value of the Beach in off-season. The other thing is this study emphasizes in particular 'travel cost' that is not only monetary cost but also including opportunity cost of 'travel time'. According to the truncated negative binomial model, estimates the Consumer Surplus(CS) values per trip of about 199,754 Korean won and the total economic value was estimated to be 1,288,680 Korean won.

  • PDF

Bayesian Inference for the Zero In ated Negative Binomial Regression Model (제로팽창 음이항 회귀모형에 대한 베이지안 추론)

  • Shim, Jung-Suk;Lee, Dong-Hee;Jun, Byoung-Cheol
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.5
    • /
    • pp.951-961
    • /
    • 2011
  • In this paper, we propose a Bayesian inference using the Markov Chain Monte Carlo(MCMC) method for the zero inflated negative binomial(ZINB) regression model. The proposed model allows the regression model for zero inflation probability as well as the regression model for the mean of the dependent variable. This extends the work of Jang et al. (2010) to the fully defiend ZINB regression model. In addition, we apply the proposed method to a real data example, and compare the efficiency with the zero inflated Poisson model using the DIC. Since the DIC of the ZINB is smaller than that of the ZIP, the ZINB model shows superior performance over the ZIP model in zero inflated count data with overdispersion.

A Study on the Influence of the Space Syntax and the Urban Characteristics on the Incidence of Crime Using Negative Binomial Regression (음이항 회귀모형을 이용한 공간구문론 및 도시특성요소가 범죄발생에 미치는 영향 연구)

  • Kim, Hyeong Jun;Choi, Yeol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.2
    • /
    • pp.333-340
    • /
    • 2016
  • The aim of this study is to specifically understand the characteristics of the crime by empirical analysis for the determining factors that affect determining the crime through the space syntax in Busan. In this study, poisson regression and negative binomial regression were used for accurate analysis. 8 variables that were significant of the total 13 variables. The summary if this study based on the results is as follow. Statistically significant variables are female ratio, over 65 population ratio, administration are and commercial area ratio in characteristics. And the more CCTVs a region has, the lower crime rate it shows. As a results of examing whether space syntax variables can predict crime occurrence places. Space with low connectivity come to be a crime causal factor because they have few other related spaces and thereby have low possibility of sudden appearance of interrupters, which results in low surveillance levels of foot passengers. It will provide the basic data that can contribute to urban planning and implementation of crime prevention aspects.

Developing Accident Models of Rotary by Accident Occurrence Location (로터리 사고발생 위치별 사고모형 개발)

  • Na, Hee;Park, Byung-Ho
    • International Journal of Highway Engineering
    • /
    • v.14 no.4
    • /
    • pp.83-91
    • /
    • 2012
  • PURPOSES : This study deals with Rotary by Accident Occurrence Location. The purpose of this study is to develop the accident models of rotary by location. METHODS : In pursuing the above, this study gives particular attentions to developing the appropriate models using multiple linear, Poisson and negative binomial regression models and statistical analysis tools. RESULTS : First, four multiple linear regression models which are statistically significant(their $R^2$ values are 0.781, 0.300, 0.784 and 0.644 respectively) are developed, and four Poisson regression models which are statistically significant(their ${\rho}^2$ values are 0.407, 0.306, 0.378 and 0.366 respectively) are developed. Second, the test results of fitness using RMSE, %RMSE, MPB and MAD show that Poisson regression model in the case of circulatory roadway, pedestrian crossing and others and multiple linear regression model in the case of entry/exit sections are appropriate to the given data. Finally, the common variable that affects to the accident is adopted to be traffic volume. CONCLUSIONS : 8 models which are all statistically significant are developed, and the common and specific variables that are related to the models are derived.

The effect of mutual cooperation between the Patent applicants on the Technological Innovation in ICT (특허 출원인 간 상호협력이 기술혁신에 미치는 영향)

  • Ju, Seong-Hwan
    • Journal of Digital Convergence
    • /
    • v.14 no.10
    • /
    • pp.83-93
    • /
    • 2016
  • In this paper, I study to determine the effect on patent applicants across the network characteristics of innovation in the ICT sector in Korea. For that, I use the Social Network Analysis(SNA) and the Negative Binomial Regression(NBR). The results about the innovation network in Korea ICT is very dense type. And the degree centrality and the closeness centrality had such a positive effect on innovation performance. Also, the efficiency had not reached a significant effect and the constraint was found to have a negative effect on innovation performance. In the future, based on these results, we need to plan a proper policy of the Korea Technology Innovation Policy.