• Title/Summary/Keyword: Negative Magnetic Permeability

Search Result 12, Processing Time 0.014 seconds

The Effect of Magnetic Field Annealing on the Structural and Electromagnetic Properties of Bising $Co_{82}Zr_6Mo_{12}$ Thin Films for Magnetoresistance Elements (자기저항소자의 바이어스용 $Co_{82}Zr_6Mo_{12}$ 박막의 구조 및 전자기적 특성에 미치는 자장 중 열처리의 영향)

  • 김용성;노재철;이경섭;서수정;김기출;송용진
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.2
    • /
    • pp.111-120
    • /
    • 1999
  • The effects of annealing in rotating magnetic field after deposition on electromagnetic properties of $Co_{82}Zr_6Mo_{12}$ thin (200~1200 $\AA$) films prepared by RF-magnetron sputtering were investigated in terms of microstructure and surface morphology. The coercivity decreases, but $4{\pi}M_5$ does not change with increasing the film thickness. The coercivity of the films was decreased below 300 $^{\circ}C$ due to stress relief and decreasing the surface roughness, while increased at 400 $^{\circ}C$ due to partial grain growth. And then, $4{\rho}M_5$ was almost independent of annealing temperatures below 200 $^{\circ}C$, but increased from 7.4 kG to 8.0 kG at 300 $^{\circ}C$ and at 400 $^{\circ}C$, which was caused by precipitation and growth of fine Co particles in the films. The electrical resistivity of films was decreased with increasing annealing temperatures and the magnetoresistance was a negative value of nearly 0 $\mu$$\Omega$cm. After annealing at 300 $^{\circ}C$, maximum effective permeability was 1200 to the hard axis of the thin films according to high frequency change. Considering the practical application of biasing layers of the films for magnetoresistive heads, optimal annealing conditions was obtained after one hour annealing at 300 $^{\circ}C$ in 400 Oe rotating magnetic field.

  • PDF

Resonant Wireless Power Transfer System with High Efficiency using Metamaterial Cover (메타구조 기반의 고효율 공진형 무선전력전송 시스템)

  • Kim, Hyoungjun;Seo, Chulhun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.1
    • /
    • pp.47-51
    • /
    • 2014
  • In this paper, unit cell and arrayed cover for improving the transfer efficiency of resonant wireless power transfer system is proposed. We used the characteristic of zero refractive index for focusing a magnetic field between the transmitting resonator and receiving resonator. For zero refractive index, we designed the unit cell structure that have a negative value of effective permeability. The size of proposed unit cell based on metamaterial structure is $70mm{\times}70mm{\times}3.2mm$, operating frequency is 13.56 MHz. And, the size of arrayed cover is $400mm{\times}400mm{\times}3.2mm$, is consists of 2-layers. The transfer efficiency of the proposed wireless power transfer system are 94.8 %, 93.2 %, 91.4 %, 90.8 % at 100 mm, 200 mm, 300 mm and 400 mm (distance between transmitting and receiving resonator), respectively. And proposed WPT system has a transfer efficiency high than 90 % over the overall distances.