• 제목/요약/키워드: Negative Electrode

검색결과 428건 처리시간 0.026초

전극위치에 따른 전기장 내 프로판 예혼합 화염의 특성 (Characteristics of Premixed Propane Flame in Electric Field according to Electrode Position)

  • 김태훈;김민석;김혜민
    • 한국분무공학회지
    • /
    • 제28권3호
    • /
    • pp.134-142
    • /
    • 2023
  • Electric field assisted combustion is a method that reduces instability in lean combustion. In this study investigated the effects of electrode position on propane-air flame characteristic using a ring electrode. Results showed that burning velocity was not affected by electrode position, but positive voltage expanded the flammability limit while negative voltage contracted it. The effect of voltage polarity on the flammability limit decreased as the electrode position increased. Expanding the flammability limit with a positive voltage can reduce NOx emissions.

압연이 Ni-MH 2차전지용 금속수소화물 전극의 충·방전 특성에 미치는 영향 (The Effect of Rolling on the Charge-Discharge Characteristic of Metal Hydride Electrode for Ni-MH Secondary Battery)

  • 박원;장상민;최승준;노학;최전;박충년
    • 한국수소및신에너지학회논문집
    • /
    • 제7권2호
    • /
    • pp.165-171
    • /
    • 1996
  • The effect of rolling on the charge-discharge property was studied for metal hydride negative electrode. $(LM)Ni_{3.6}Al_{0.4}Co_{0.7}Mn_{0.3}$(pleateau pressure : below 1 atm at room temperature, volume expansion : 9%, entalpy : $8.7kcal/molH_2$) alloy was prepared by arc melting, and then it was coated with various copper weight percent. The copper coated alloys were then rolled with the different reduction ratio. From the results, it was found that the maximum discharge capacity increased with increasing reduction ratio, and 15wt% copper coated sample shows the highest discharge capacity, 324mAh/g, after rolling with 30% reduction ratio. In view of cycle life for the negative electrode, the 15wt% copper coated electrode which was rolled with 13% reduction ratio showed the longest cycle life compared with other electrodes.

  • PDF

날개전극형 코로나 모터의 기초 회전특성 및 에너지 효율 (Basic Rotation Characteristics and Energy Efficiencies of a Blade-Type Corona Motor)

  • 정재승;문재덕
    • 전기학회논문지
    • /
    • 제59권10호
    • /
    • pp.1862-1868
    • /
    • 2010
  • A corona motor, as one of a powerful cooling means of microelectronic devices, has been employed because of its very simple structure of no coils and no brushes. In this paper, the effect of polarity of applied voltage and the number of blade corona electrodes on the fundamental properties of rotation of the motor was investigated. The I-V and rotation characteristics of the blade corona electrode were significantly different from the different polarities of applied voltages and the blade corona electrode numbers, due to the different space charge effect resulted by the different migration mobility of the positive and negative ions generated near the blade corona electrode tip of the rotor of the motor. The rotation speed of the motor was influenced significantly by the polarity of corona discharge, the number of blades, and mass of rotor. At the same corona current, an effective rotation can be obtained with the positive corona caused by the lower ion mobility. On the other hand, the higher rotation speed can be obtained with the negative corona resulted from its higher corona current. The highest rotation speed and energy efficiency can be obtained with the rotor having 4 blades.

소듐 이온전지용 주석 음극의 안정화를 위한 PVdF 옥세틱 구조의 영향 (Effect of Auxetic Structure of PVdF on Tin Anode Stability for Na-ion Batteries)

  • 박진수
    • 한국분말재료학회지
    • /
    • 제25권6호
    • /
    • pp.507-513
    • /
    • 2018
  • This study investigates the viability of using a Na-ion battery with a tin(Sn) anode to mitigate the vulnerability caused by volume changes during discharge and charge cycling. In general, the volume changes of carbon material do not cause any instability during intercalation into its layer structure. Sn has a high theoretical capacity of $847mAh\;g^{-1}$. However, it expands dramatically in the discharge process by alloying Na-Sn, placing the electrode under massive internal stress, and particularly straining the binder over the elastic limit. The repeating strain results in loss of active material and its electric contact, as well as capacity decrease. This paper expands the scope of fabrication of Na-ion batteries with Sn by fabricating the binder as an auxetic structure with a unique feature: a negative Poisson ratio (NPR), which increases the resistance to internal stress in the Na-Sn alloying/de-alloying processes. Electrochemical tests and micrograph images of auxetic and common binders are used to compare dimensional and structural differences. Results show that the capacity of an auxetic-structured Sn electrode is much larger than that of a Sn electrode with a common-structured binder. Furthermore, using an auxetic structured Sn electrode, stability in discharge and charge cycling is obtained.

리튬이온 이차전지용 고용량 KVO3 음극의 전기화학적 성능개선 (Improvement of Electrochemical Performance of KVO3 as High Capacity Negative Electrode Material for Lithium-ion Batteries)

  • 김태훈;김경래;박환동;김해빈;류지헌
    • 전기화학회지
    • /
    • 제22권4호
    • /
    • pp.148-154
    • /
    • 2019
  • 바나듐 산화물계 물질은 고용량의 구현이 가능하여 리튬이온 이차전지용 음극재료로 많은 연구가 진행되어 왔다. 본 연구에서는 새로운 음극물질로써 포타슘 메타바나데이트($KVO_3$)를 합성하였으며, 이를 음극 활물질로서의 전기화학적 특성에 대하여 평가하였다. $NH_4VO_3$와 KOH 수용액을 당량에 맞추어 혼합한 후에 이를 가열하여 암모니아를 제거하고 건조함으로써 $KVO_3$ 분말을 손쉽게 합성할 수 있었다. 이렇게 얻어진 $KVO_3$를 300 내지 $500^{\circ}C$에서 8시간 동안 열처리하였다. 열처리 온도가 증가할 수록 초기용량은 감소하였으나, 수명과 효율은 일부 개선되는 경향을 나타내었으나 큰 차이가 나타나지 않았다. 반면에 $KVO_3$를 사용한 전지의 제조 시에 PVdF (polyvinylidene fluoride) 대신에 PAA (polyacrylic acid) 바인더를 사용한 경우 및 전해액 첨가제인 FEC (fluoroethylene carbonate) 를 적용하는 경우에 전기화학적 성능이 크게 개선되었다. 이 전지의 초기 가역용량과 쿨롱효율이 각각 1169 mAh/g과 76.3%로 개선되어 리튬이온 이차전지용 새로운 음극재료로 가능성을 기대할 수 있을 것이다.

수침대 그물전극형 방전장치의 이온풍 발생특성 (Ionic Wind Generation Characteristics of a Water-Pen Point-to-Mesh Type Discharge System)

  • 정재승;문재덕
    • 전기학회논문지
    • /
    • 제58권4호
    • /
    • pp.783-787
    • /
    • 2009
  • A point-to-mesh type discharge system, utilizing a water-pen point as a corona discharge electrode and a mesh as an ion induction electrode, has been proposed, and the effect of the water-pen point electrode of the discharge system to the ionic wind velocity and generation yield was investigated. It was observed that the proposed discharge system with the water-pen point electrode can generate a higher ionic wind velocity as compared with that of the metal point electrode. As a result, the peak ionic wind velocities of 2.61 and 4.05 m/s for the positive and negative corona discharges of the proposed discharge system can be obtained, which are 1.39 and 1.15 times higher than those of the metal point electrode with same design. The ionic wind generation yield of 4.72 m/s/W of the discharge system with the water-pen point electrode was obtained for the positive corona, which was 3.66 times higher than that of the metal point electrode. This enhancement may be due to the effect of the water-pen point electrode.

하이브리드 슈퍼커패시터의 음극 및 양극 설계에 따른 전기화학적 거동 (Electrochemical Behavior Depending on Designed-Anode and Cathodes of Hybrid Supercapacitors)

  • 신승일;이병관;하민우;안건형
    • 한국재료학회지
    • /
    • 제29권12호
    • /
    • pp.774-780
    • /
    • 2019
  • The performance of Li-ion hybrid supercapacitors (asymmetric-type) depends on many factors such as the capacity ratio, material properties, cell designs and operating conditions. Among these, in consideration of balanced electrochemical reactions, the capacity ratio of the negative (anode) to positive (cathode) electrode is one of the most important factors to design the Li-ion hybrid supercapacitors for high energy storing performance. We assemble Li-ion hybrid supercapacitors using activated carbon (AC) as anode material, lithium manganese oxide as cathode material, and organic electrolyte (1 mol L-1 LiPF6 in acetonitrile). At this point, the thickness of the anode electrode is controlled at 160, 200, and 240 ㎛. Also, thickness of cathode electrode is fixed at 60 ㎛. Then, the effect of negative and positive electrode ratio on the electrochemical performance of AC/LiMn2O4 Li-ion hybrid supercapacitors is investigated, especially in the terms of capacity and cyclability at high current density. In this study, we demonstrate the relationship of capacity ratio between anode and cathode electrode, and the excellent electrochemical performance of AC/LiMn2O4 Li-ion hybrid supercapacitors. The remarkable capability of these materials proves that manipulation of the capacity ratio is a promising technology for high-performance Li-ion hybrid supercapacitors.

Polarization Behavior of Li4Ti5O12 Negative Electrode for Lithiumion Batteries

  • Ryu, Ji-Heon
    • Journal of Electrochemical Science and Technology
    • /
    • 제2권3호
    • /
    • pp.136-142
    • /
    • 2011
  • $Li_4Ti_5O_{12}$ is prepared through a solid-state reaction between $Li_2CO_3$ and anatase $TiO_2$ for applications in lithium-ion batteries. The rate capability is measured and the electrode polarization is analyzed through the galvanostatic intermittent titration technique (GITT). The rate characteristics and electrode polarization are highly sensitive to the amount of carbon loading. Polarization of the $Li_4Ti_5O_{12}$ electrode continuously increases as the reaction proceeds in both the charge and discharge processes. This relation indicates that both electron conduction and lithium diffusion are significant factors in the polarization of the electrode. The transition metal (Cu, Ni, Fe) ion added during the synthesis of $Li_4Ti_5O_{12}$ for improving the electrical conductivity also greatly enhances the rate capability.

Potential Profiles and Capacitances of an Ideally Polarizable Electrode/Hard Sphere Electrolyte System

  • Kim, Sang-Youl;Vedam, K.
    • Bulletin of the Korean Chemical Society
    • /
    • 제11권6호
    • /
    • pp.487-493
    • /
    • 1990
  • A complete potential profile of an electrical double layer is calculated from a distribution function of charged particles based upon a model where the effect of a charged electrode and the finite size of ion are explicitly included. Electrons which are distributed on the electrode surface are assumed not to penetrate the electrode/electrolyte boundary. Formation of the constant density regions and their effects on potential and the electrical double layer capacitances are studied in great detail. The distribution of surface electrons as well as the constant density regions are found to be essential in characterizing the electrical double layer. The introduction of the ion size into the prior electrical double layer model of an ideally polarizable electrode/point charged electrolyte system, shows a great improvement in its characteristics mostly at negative potential region.

서브마이크로미터 크기의 실리콘 음극용 폴리페난트렌퀴논-폴리아크릴산 전도성 고분자 복합 바인더 (Poly(phenanthrenequinone)-Poly(acrylic acid) Composite as a Conductive Polymer Binder for Submicrometer-Sized Silicon Negative Electrodes)

  • 김상모;이병일;이재길;이정범;류지헌;김형태;김영규;오승모
    • 전기화학회지
    • /
    • 제19권3호
    • /
    • pp.87-94
    • /
    • 2016
  • 나노 크기에 비해 부피 변화가 상대적으로 더 큰 서브마이크로미터 크기의 실리콘 음극의 성능 향상을 위해 도전재 역할을 하는 3,6-poly(phenanthrenequinonone) (PPQ) 전도성 고분자 바인더와 카복시기를 가져 결착력이 좋은 poly(acrylic acid) (PAA)를 블렌딩 한 복합 바인더를 도입하였다. PAA를 PPQ와 블렌딩하여 전극을 제조했을 때 결착력이 월등히 증가하였고 충방전실험 결과 PPQ 바인더를 단독으로 사용한 전극보다 안정된 수명 특성을 나타냈다. PPQ와 PAA의 함량 비율을 2:1, 1:1, 1:2(무게비)로 하여 각 전극의 수명 특성을 비교했을 때, PPQ의 함량이 가장 큰 전극(2:1, QA21)이 50번째 사이클에서 가장 좋은 용량 유지율을 보였다. 이는 PPQ가 입자 간 또는 입자와 집전체 사이에서 도전재로서 존재하여 전자가 이동할 수 있는 통로를 제공해 주고 PAA가 적절한 결착력을 제공해주어 전극의 내부 저항이 가장 작았기 때문이다. PPQ-PAA 복합 바인더를 사용한 전극은 입자 형태의 도전재인 super-P를 전체 전극 무게 대비 20%를 첨가하여 제조한 전극보다도 더 안정적인 수명 특성을 나타내었다.