• Title/Summary/Keyword: Negative Buoyancy

Search Result 14, Processing Time 0.026 seconds

Study on Floating to Surface for the Exercise Vehicle with Negative Buoyancy (음성부력을 갖는 연습탄의 수면부양 방안 연구)

  • Jung, Chan-Hee;Choi, Jang-Seob;Kim, Ki-Un;Kang, Myung-Koo;Lee, Jeong-Jun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.121-129
    • /
    • 2012
  • In this study, in terms of the exercise vehicles of the weapon systems having negative buoyancy, the analysis on the operation concepts was performed and the new methods of floating to surface were proposed. In case of having negative buoyancy, the additional methods for recovering the exercise vehicle have to be considered. As parts of recovering the exercise vehicle, for floating to surface the new methods of weight discharge, weight separation and sea water discharge were proposed. The conceptual design about sea water discharge method was performed. It was confirmed that those methods could be applied to the design of the exercise vehicle having negative buoyancy.

A negative reactivity feedback driven by induced buoyancy after a temperature transient in lead-cooled fast reactors

  • Arias, Francisco J.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.1
    • /
    • pp.80-87
    • /
    • 2018
  • Consideration is given to the possibility to use changes in buoyancy as a negative reactivity feedback mechanism during temperature transients in heavy liquid metal fast reactors. It is shown that by the proper use of heavy pellets in the fuel elements, fuel rods could be endowed with a passive self-ejection mechanism and then with a negative feedback. A first estimate of the feasibility of the mechanism is calculated by using a simplified geometry and model. If in addition, a neutron poison pellet is introduced at the bottom of the fuel, then when the fuel element is displaced upward by buoyancy force, the reactivity will be reduced not only by disassembly of the core but also by introducing the neutron poison from the bottom. The use of induced buoyancy opens up the possibility of introducing greater amounts of actinides into the core, as well as providing a palliative solution to the problem of positive coolant temperature reactivity coefficients that could be featured by the heavy liquid metal fast reactors.

THERMALLY DRIVEN BUOYANCY WITHIN A HOT LAYER DUE TO SPRINKLER OPERATION

  • Nyankina, K.;F Turan, O.
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.625-632
    • /
    • 1997
  • A two-dimensional zone-like model is developed to predict the interaction between hot gas layer and water droplets after sprinkler activation. The model combines the motion equations for each droplet with heat and mass transfer between the gas and water. The results indicate that negative buoyancy in the hot layer can only be obtained if the initial temperature profile is uniform. If an experimental profile Is used instead, positive buoyancy results. This conclusion has been confirmed with experimental data.

  • PDF

Buoyancy Engine Independent Test Module Test in the Ocean Engineering Basin (부력엔진 독립시험 모듈 해양공학수조 시험)

  • Chong-Moo Lee;Hyung-Woo Kim;Tae-Hwan Joung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_2
    • /
    • pp.1155-1162
    • /
    • 2023
  • The Korea Research Institute of Ships and Ocean Engineering (KRISO), which is developing the core technology for the buoyancy engine of underwater gliders, has developed a test module that can vertically ascend and descend with a buoyancy engine to verify the performance of the developed buoyancy engine. The independent test module was tested in a 15 metre deep pit in the Ocean Engineering Basin to verify its ability to ascend and descend. In order to test at a shallower depth than the real sea, it was necessary to know the negative buoyancy value during descent and the time at which the buoyancy engine would be activated. To do this, we solved the equation of motion in the vertical direction to obtain these values and applied them to the tank test. To validate the usefulness of solving the equation, we also compared the depth of descent over time measured in the test with the results calculated from the solution.

Effects of Various Densities and Velocities to Gaseous Hydrocarbon Fuel on Near Nozzle Flow Field in Laminar Coflow Diffusion Flames

  • Ngorn, Thou;Jang, Sehyun;Yun, Seok Hun;Park, Seol Hyeon;Lee, Joo Hee;Choi, Jae Hyuk
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.291-293
    • /
    • 2015
  • The experimental study on flow characteristic in various laminar coflow diffusion flame has been conducted with a particular focus on the buoyancy force exerted from gaseous hydrocarbon fuels. Methane ($CH_4$), Ethylene ($C_2H_4$) and n-Butane ($C_4H_{10}$) were used as fuels. Coflow burner and Schlieren technique were used to observe the fuel flow field near nozzle exit and flow characteristics in flames. The result showed that the vortices in n-Butane with density heavier than air were appeared near the nozzle exit with the strong negative buoyancy on the fuel stream. As Reynolds number increases by the control of velocity, the vortices were greater and the vortices tips were moved up from the nozzle exit. In addition, it can be found that the heated nozzle can affect to the flow fields of fuel stream near the nozzle exit.

  • PDF

Lagrangian Particle Model for Dense Gas Dispersion (고밀도 가스 확산 예측을 위한 라그란지안 입자 모델)

  • Ko, S.;Lee, C.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.899-904
    • /
    • 2003
  • A new model for dense gas dispersion is formulated within the Lagrangian framework. In several accidental released situations, denser-than-air vapour clouds are formed which exhibit dispersion behavior markedly different from that observed for passive atmospheric pollutants. For relevant prediction of dense gas dispersion, the gravity and entrainment effects need to implemented. The model deals with negative buoyancy which is affected by gravity. Also, the model is subjected to entrainment. The mean downward motion of each particle was accounted for by considering the Langevin equation with buoyancy correction term.

  • PDF

Effects of various densities and velocities on gaseous hydrocarbon fuel on near nozzle flow field under different laminar coflow diffusion flames

  • Ngorn, Thou;Jang, Sehyun;Yun, Seok Hun;Park, Seol Hyeon;Lee, Joo Hee;Chung, Suk Ho;Choi, Jae Hyuk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.2
    • /
    • pp.102-106
    • /
    • 2016
  • An experimental study on the flow characteristics under various laminar coflow diffusion flames was conducted with a particular focus on the buoyancy force exerted from gaseous hydrocarbon fuels. Methane ($CH_4$), ethylene ($C_2H_4$), and n-butane ($C_4H_{10}$) were used as the fuels. A coflow burner and the Schlieren imaging technique were used to observe the flow field of each fuel near the nozzle exit as well as the flow characteristics in the flames. The results show that a vortex with a density heavier than air appeared in n-butane near the nozzle exit with a strong negative buoyancy on the fuel steam. As the Reynolds number increased through the control of the fuel velocity of the n-butane flame, the vortices were greater and the vortex tips were moved up from the nozzle exit. In addition, the heated nozzle affected the flow fields of the fuel steam near the nozzle exit.

Performance Analysis of a Float-Type Fuel Supply Valve through Flight Tests (저속항공기 탑재시험을 통한 부력식 연료공급밸브 작동 분석)

  • Jung, Sungmin;Park, Jeong-Bae
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.1
    • /
    • pp.76-81
    • /
    • 2016
  • At negative-g condition, a float-type valve can open the passage of fuel in order to it flows continuously through a pressurized fuel tank system. Since specialized test conditions and high-cost supports are required, it is truly difficult to test the valve in a real high-speed test. Therefore, this paper contains performance analysis of a float-type fuel supply valve through flight tests conducting roll and negative-g maneuvers.

Effect of Capsule Shape on Heat Storage (캡슐 형상이 축열에 미치는 영향)

  • 정재동
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.11
    • /
    • pp.964-971
    • /
    • 2002
  • A numerical investigation of the constrained melting of phase change materials within spherical-like capsule is presented. A single-domain enthalpy formulation is used for simulation of the phase change phenomenon. The solution methodology is verified with the melting process inside an isothermal spherical capsule. Especially, the effect of capsule shape on the heat storage is emphasized. Two shape parameters are considered from the real capsule shape showing good characteristics of heat storage and the effect of these parameters is examined. Early during the melting process, the conduction mode of heat transfer is dominant. Thus the capsule shape with large surface area is desirable. However, the capsule shape with large surface area plays negative role on the strength of buoyancy-driven convection that becomes more important as melting continues.