• Title/Summary/Keyword: Negative Binomial Regression Analysis

Search Result 106, Processing Time 0.019 seconds

Mixed Effects Kernel Binomial Regression

  • Hwang, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.4
    • /
    • pp.1327-1334
    • /
    • 2008
  • Mixed effect binomial regression models are widely used for analysis of correlated count data in which the response is the result of a series of one of two possible disjoint outcomes. In this paper, we consider kernel extensions with nonparametric fixed effects and parametric random effects. The estimation is through the penalized likelihood method based on kernel trick, and our focus is on the efficient computation and the effective hyperparameter selection. For the selection of hyperparameters, cross-validation techniques are employed. Examples illustrating usage and features of the proposed method are provided.

  • PDF

Urban and Rural Roundabout Accident Occurrence Models (도시 및 지방 회전교차로 사고 발생 모형)

  • Beck, Tea Hun;Lim, Jin Kang;Park, Byung Ho
    • International Journal of Highway Engineering
    • /
    • v.17 no.5
    • /
    • pp.39-46
    • /
    • 2015
  • PURPOSES: The operational characteristics of roundabouts are generally influenced by location as well as traffic volume. The goal of this study is to develop urban and rural roundabout accident models and to discuss safety improvement guidelines based on the model. METHODS : To analyze accidents, count data models are utilized in this study. This study used accident data from 2010 to 2013 for 56 roundabouts collected from the Traffic Accident Analysis System (TASS) of Road Traffic Authority. Poisson and negative binomial regression models were developed for this study using NLOGIT 4.0. RESULTS : The main results are as follows. First, the hypotheses that there are distributional differences in the number of accidents and injuries/fatalities among rural and urban roundabouts were accepted. Second, Poisson and negative binomial regression accident models, which were all statistically significant, were developed. Seven independent variables, which were statistically significant, were adopted. Third, the common variable of models was evaluated to be traffic volume. CONCLUSIONS : This study developed two negative binomial roundabout accident models and suggested some accident reduction strategies. The results are expected to give some implications to the safety improvement of roundabout.

Accident Models of Circular Intersections by Weather Condition in Korea (기상상태에 따른 국내 원형교차로 사고모형)

  • Park, Byung Ho;Han, Su San
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.6
    • /
    • pp.178-184
    • /
    • 2012
  • This study deals with the traffic accidents by weather condition. The objectives are to comparatively analyze the characteristics, and to develop the models of traffic accidents by weather condition. In pursuing the above, this paper gives particular attentions to testing the differences between two groups, and developing the models(Poisson and negative binomial regression) using the data of domestic circular intersections. The main results are as follows. First, three Poisson models and one negative binomial models which were all statistically significant were developed using the number of accident and EPDO by the clear weather and other as the dependant variables. Second, the differences between two models were comparatively analyzed using the chosen variables. This paper might be expected to give some implications to traffic safety policy-making to reduce and prevent the traffic accidents in circular intersections.

Development of Accident Prediction Models for Freeway Interchange Ramps (고속도로 인터체인지 연결로에서의 교통사고 예측모형 개발)

  • Park, Hyo-Sin;Son, Bong-Su;Kim, Hyeong-Jin
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.3
    • /
    • pp.123-135
    • /
    • 2007
  • The objective of this study is to analyze the relationship between traffic accidents occurring at trumpet interchange ramps according to accident type as well as the relevant factors that led to the traffic accidents, such as geometric design elements and traffic volumes. In the process of analysis of the distribution of traffic accidents, negative binomial distribution was selected as the most appropriate model. Negative binomial regression models were developed for total trumpet interchange ramps, direct ramps, loop ramps and semi-direct ramps based on the negative binomial distribution. Based upon several statistical diagnostics of the difference between observed accidents and predicted accidents with four previously developed models, the fit proved to be reasonable. Understanding of statistically significant variables in the developed model will enable designers to increase efficiency in terms of road operations and the development of traffic accident prevention policies in accordance with road design features.

Analysis of Food Poisoning via Zero Inflation Models

  • Jung, Hwan-Sik;Kim, Byung-Jip;Cho, Sin-Sup;Yeo, In-Kwon
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.5
    • /
    • pp.859-864
    • /
    • 2012
  • Poisson regression and negative binomial regression are usually used to analyze counting data; however, these models are unsuitable for fit zero-inflated data that contain unexpected zero-valued observations. In this paper, we review the zero-inflated regression in which Bernoulli process and the counting process are hierarchically mixed. It is known that zero-inflated regression can efficiently model the over-dispersion problem. Vuong statistic is employed to compare performances of the zero-inflated models with other standard models.

A Study on Impact of Factors Influencing Maritime Freight Rates Using Poisson and Negative Binomial Regression Analysis on Blank Sailings of Shipping Companies (포아송 및 음이항 회귀분석을 이용한 해상운임 결정요인이 해운선사의 블랭크 세일링에 미치는 영향 분석 연구)

  • Won-Hyeong Ryu;Hyung-Sik Nam
    • Journal of Navigation and Port Research
    • /
    • v.48 no.1
    • /
    • pp.62-77
    • /
    • 2024
  • In the maritime shipping industry, imbalance between supply and demand has persistently increased, leading to the utilization of blank sailings by major shipping companies worldwide as a key means of flexibly adjusting vessel capacity in response to shipping market conditions. Traditionally, blank sailings have been frequently implemented around the Chinese New Year period. However, due to unique circumstances such as the global pandemic starting in 2020 and trade tensions between the United States and China, shipping companies have recently conducted larger-scale blank sailings compared to the past. As blank sailings directly impact freight transport delays, they can have negative repercussions from perspectives of both businesses and consumers. Therefore, this study employed Poisson regression models and negative binomial regression models to analyze the influence of maritime freight rate determinants on shipping companies' decisions regarding blank sailings, aiming to proactively address potential consequences. Results of the analysis indicated that, in Poisson regression analysis for 2M, significant variables included global container shipping volume, container vessel capacity, container ship scrapping volume, container ship newbuilding index, and OECD inflation. In negative binomial regression analysis, ocean alliance showed significance with global container shipping volume and container ship order volume, the alliance with container ship capacity and interest rates, non-alliance with international oil prices, global supply chain pressure index, container ship capacity, OECD inflation, and total alliance with container ship capacity and interest rates.

Risk Factors Influencing Probability and Severity of Elder Abuse in Community-dwelling Older Adults: Applying Zero-inflated Negative Binomial Modeling of Abuse Count Data (영과잉 가산자료(Zero-inflated Count Data) 분석 방법을 이용한 지역사회 거주 노인의 노인학대 발생과 심각성에 미치는 위험요인 분석)

  • Jang, Mi Heui;Park, Chang Gi
    • Journal of Korean Academy of Nursing
    • /
    • v.42 no.6
    • /
    • pp.819-832
    • /
    • 2012
  • Purpose: This study was conducted to identify risk factors that influence the probability and severity of elder abuse in community-dwelling older adults. Methods: This study was a cross-sectional descriptive study. Self-report questionnaires were used to collect data from community-dwelling Koreans, 65 and older (N=416). Logistic regression, negative binomial regression and zero-inflated negative binomial regression model for abuse count data were utilized to determine risk factors for elder abuse. Results: The rate of older adults who experienced any one category of abuse was 32.5%. By zero-inflated negative binomial regression analysis, the experience of verbal-psychological abuse was associated with marital status and family support, while the experience of physical abuse was associated with self-esteem, perceived economic stress and family support. Family support was found to be a salient risk factor of probability of abuse in both verbal-psychological and physical abuse. Self-esteem was found to be a salient risk factor of probability and severity of abuse in physical abuse alone. Conclusion: The findings suggest that tailored prevention and intervention considering both types of elder abuse and target populations might be beneficial for preventative efficiency of elder abuse.

Traffic Accident Models of 3-Legged Signalized Intersections in the Case of Cheongju (3지 신호교차로의 교통사고 발생모형 - 청주시를 사례로 -)

  • Park, Byung-Ho;Han, Sang-Uk;Kim, Tae-Young
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.2
    • /
    • pp.94-99
    • /
    • 2009
  • This study deals with the traffic accidents at the 3-legged signalized intersections in Cheongu. The goals are to analyze the geometric, traffic and operational conditions of intersections and to develop a various functional forms that predict the accidents. The models are developed through the correlation analysis, the multiple linear, the multiple nonlinear, Poisson and negative binomial regression analysis. In this study, two multiple linear, two multiple nonlinear and two negative binomial regression models were calibrated. These models were all analyzed to be statistically significant. All the models include 2 common variables(traffic volume and lane width) and model-specific variables. These variables are, therefore, evaluated to be critical to the accident reduction of Cheongju.

Forecasting hierarchical time series for foodborne disease outbreaks (식중독 발생 건수에 대한 계층 시계열 예측)

  • In-Kwon Yeo
    • The Korean Journal of Applied Statistics
    • /
    • v.37 no.4
    • /
    • pp.499 -508
    • /
    • 2024
  • In this paper, we investigate hierarchical time series forecasting that adhere to a hierarchical structure when deriving predicted values by analyzing segmented data as well as aggregated datasets. The occurrences of food poisoning by a specific pathogen are analyzed using zero-inflated Poisson regression models and negative binomial regression models. The occurrences of major, miscellaneous, and overall food poisoning are analyzed using Poisson regression models and negative binomial regression models. For hierarchical time series forecasting, the MinT estimation proposed by Wickramasuriya et al. (2019) is employed. Negative predicted values resulting from hierarchical adjustments are adjusted to zero, and weights are multiplied to the remaining lowest-level variables to satisfy the hierarchical structure. Empirical analysis revealed that there is little difference between hierarchical and non-hierarchical adjustments in predictions based on pathogens. However, hierarchical adjustments generally yield superior results for predictions concerning major, miscellaneous, and overall occurrences. Without hierarchical adjustment, instances may occur where the predicted frequencies of the lowest-level variables exceed that of major or miscellaneous occurrences. However, the proposed method enables the acquisition of predictions that adhere to the hierarchical structure.

The study on the determinants of the number of job changes (중소기업 청년인턴 이직횟수 결정요인 분석)

  • Park, Sungik;Ryu, Jangsoo;Kim, Jonghan;Cho, Jangsik
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.2
    • /
    • pp.387-397
    • /
    • 2015
  • In this paper, the determinants of the number of job changes in the SMEs (small and medium enterprises) youth-intern project is analysed, utilizing SMEs youth-intern DB and employment insurance DB. Since the number of job changes are count data which take integer values other than negative values, general linear regression analysis becomes inappropriate. Therefore, four models such as Poisson regression model, zero inflated Poisson regression model, negative binomial regression model and zero inflated negative binomial regression model are tried to fit count data. A zero inflated negative binomial regression model is selected to be the best model. Major results are the followings. First, the number of job changes is shown to be significantly smaller in the treatment group than in the control group. Second, the number of job changes turns out to be significantly smaller in the young-age group than in the old-age group. Third, it is also shown that the number of job changes of man is significantly greater than that of woman. Lastly, the number of job changes in the bigger firm is shown to be significantly less than that of the smaller firm.