• 제목/요약/키워드: Nedd4a

검색결과 5건 처리시간 0.018초

모성 및 사회성 분리 백서 모델의 해마에서 유전자 칩을 이용한 유전자 발현 연구 (Microarray Analysis of Gene Expression in Rat Hippocampus of Maternal Social Separation Model)

  • 이희제;손창희;곽형렬;이상현;한윤희;김수영;박종익;전완주;김성수
    • 생물정신의학
    • /
    • 제13권2호
    • /
    • pp.110-116
    • /
    • 2006
  • Objectives : Alteration of hippocampus was demonstrated in the maternal social separation(MSS) pups, separated from dams on postnatal day(pnd) 14 and placed alone. Therefore, to understand the molecular events involved in the MSS, we have initiated a search for gene profiles that are up or down-regulated in the hippocampus of MSS pups. Methods : Analysis of cDNA microarray was performed by using total RNA extracted from the hippocampus of control and MSS pups on pnd 17. Also, passive-avoidance test was demonstrated on pnd 35. Results : Up-regulation of Nedd4a was observed in the hippocampus of MSS pups. Also, MSS rats showed less elongation of latency in passive avoidance test. Conclusion : We suggest that environmental effects of MSS may be altered the neural and/or glial differentiation and synapse formation-related genes which may lead cognitive alterations in MSS rats.

  • PDF

Backbone NMR Assignments of WW2 domain from human AIP4

  • Seo, Min-Duk
    • 한국자기공명학회논문지
    • /
    • 제24권2호
    • /
    • pp.38-42
    • /
    • 2020
  • WW domains are small protein modules consisting of three-stranded antiparallel β-sheet, and involved in the protein-protein interaction for various biological systems. We overexpressed and purified WW2 domain from human AIP4/Itch (a member of Nedd4 family) using a pH/temperature dependent cleavage system. The backbone assignments of WW2 domain were completed, and secondary structure was predicted. Furthermore, backbone flexibility of WW2 domain was determined by 1H-15N heteronuclear NOE and amide hydrogen exchange experiments. The structural information would contribute to the structural determination of WW2 domain as well as the interaction study of WW2 domain with various binding partners.

소금민감성유전자와 비만 (Salt-sensitive genes and their relation to obesity)

  • 전용필;이명숙
    • Journal of Nutrition and Health
    • /
    • 제50권3호
    • /
    • pp.217-224
    • /
    • 2017
  • Purpose: Although it is well known thatmortality and morbidity due to cardiovascular diseases are higher in salt-sensitive subjects than in salt-resistant subjects, their underlying mechanisms related to obesity remain unclear. Here, we focused on salt-sensitive gene variants unrelated to monogenic obesity that interacted with sodium intake in humans. Methods: This review was written based on the modified $3^rd$ step of Khans' systematic review. Instead of the literature, subject genes were based on candidate genes screened from our preliminary Genome-Wide Association Study (GWAS). Finally, literature related to five genes strongly associated with salt sensitivity were analyzed to elucidate the mechanism of obesity. Results: Salt sensitivity is a measure of how blood pressure responds to salt intake, and people are either salt-sensitive or salt-resistant. Otherwise, dietary sodium restriction may not be beneficial for everyone since salt sensitivity may be associated with inherited susceptibility. According to our previous GWAS studies, 10 candidate genes and 11 single nucleotide polymorphisms (SNPs) associated with salt sensitivity were suggested, including angiotensin converting enzyme (ACE), ${\alpha}$-adducin1 (ADD1), angiotensinogen (AGT), cytochrome P450 family 11-subfamily ${\beta}$-2 ($CYP11{\beta}$-2), epithelial sodium channel (ENaC), G-protein b3 subunit (GNB3), G protein-coupled receptor kinases type 4 (GRK4 A142V, GRK4 A486V), $11{\beta}$-hydroxysteroid dehydrogenase type-2 (HSD $11{\beta}$-2), neural precursor cell-expressed developmentally down regulated 4 like (NEDD4L),and solute carrier family 12(sodium/chloride transporters)-member 3 (SLC 12A3). We found that polymorphisms of salt-sensitive genes such as ACE, $CYP11{\beta}$-2, GRK4, SLC12A3, and GNB3 may be positively associated with human obesity. Conclusion: Despite gender, ethnic, and age differences in genetics studies, hypertensive obese children and adults who are carriers of specific salt-sensitive genes are recommended to reduce their sodium intake. We believe that our findings can contribute to the prevention of early-onset of chronic diseases in obese children by facilitating personalized diet-management of obesity from childhood to adulthood.

Amyloid Precursor Protein Binding Protein-1 Is Up-regulated in Brains of Tg2576 Mice

  • Yang, Hyun-Jung;Joo, Yu-Young;Hong, Bo-Hyun;Ha, Sung-Ji;Woo, Ran-Sook;Lee, Sang-Hyung;Suh, Yoo-Hun;Kim, Hye-Sun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제14권4호
    • /
    • pp.229-233
    • /
    • 2010
  • Amyloid precursor protein binding protein-1 (APP-BP1) binds to the carboxyl terminus of amyloid precursor protein and serves as a bipartite activation enzyme for the ubiquitin-like protein, NEDD8. Previously, it has been reported that APP-BP1 rescues the cell cycle S-M checkpoint defect in Ts41 hamster cells, that this rescue is dependent on the interaction of APP-BP1 with hUba3. The exogenous expression of APP-BP1 in neurons has been reported to cause DNA synthesis and apoptosis via a signaling pathway that is dependent on APP-BP1 binding to APP. These results suggest that APP-BP1 overexpression contributes to neurodegeneration. In the present study, we explored whether APP-BP1 expression was altered in the brains of Tg2576 mice, which is an animal model of Alzheimer's disease. APP-BP1 was found to be up-regulated in the hippocampus and cortex of 12 month-old Tg2576 mice compared to age-matched wild-type mice. In addition, APP-BP1 knockdown by siRNA treatment reduced cullin-1 neddylation in fetal neural stem cells, suggesting that APP-BP1 plays a role in cell cycle progression in the cells. Collectively, these results suggest that increased expression of APP-BP1, which has a role in cell cycle progression in neuronal cells, contributes to the pathogenesis of Alzheimer's disease.

한국인에서 NDFIP2 유전적 다형성과 천식의 상관 연구 (Association Study of NDFIP2 Genetic Polymorphism with Asthma in the Korean Population)

  • 최은혜;황다현
    • 대한임상검사과학회지
    • /
    • 제53권3호
    • /
    • pp.249-256
    • /
    • 2021
  • 천식은 만성 염증성 기도 폐쇄 질환이다. 질병 발생 요인은 다양하며 특히, 유전적 요인과 환경적 요인이 천식 발병에 영향을 미치는 것으로 추정된다. MAPK (mitogen-activated protein kinase)경로는 Th1/Th2의 균형을 조절하며, 천식 발생에 중요한 역할을 하는 것으로 알려져 있다. 본 연구에서는 MAPK 경로를 조절하는 NDFIP2 유전자와 천식 발병과의 상관관계를 분석하였다. 193건의 천식 환자와 3,228건의 정상 대조군의 유전형 데이터를 사용하였다. 그 결과 NDFIP2 안에 있는 4개의 SNP이 천식과 유의한 상관관계와 높은 상대적 위험도를 보였다. 특히 NDFIP2의 rs2783122는 천식과 통계적으로 가장 유의한 연관성을 나타냈다(P-value=9.76×10-6, OR=1.67, 95% CI=1.33~2.10). NDFIP2 유전자에 대한 SNP imputation 결과 16개의 SNP가 추가 발견되었으며, 모두 유의한 상관 관계와 높은 상대적 위험도를 나타냈다. 유전자형 기반 mRNA 발현 분석을 통해 rs1408049가 minor allele을 가질 경우 유전자 발현이 증가됨을 알 수 있었다. 증가된 NDFIP2 발현은 MAPK 경로를 활성화시켜 천식 발병에 영향을 미칠 수 있다. 결론적으로 NDFIP2의 다형성은 천식 발병과 관련이 있으며, 이는 한국 인구의 천식 관리에 대한 새로운 지침을 제공할 수 있다.