• Title/Summary/Keyword: Necrosis Cell

Search Result 1,559, Processing Time 0.027 seconds

Histological changes in brain tissue of rat induced neuronal excitotoxicity by NMDA(N-methyl-D-asparate) (NMDA(N-methyl-D-asparate)의 투여에 의해 유발된 신경 과흥분상태에서의 쥐의 뇌조직 변화)

  • Song, Jae-chan
    • Korean Journal of Veterinary Research
    • /
    • v.38 no.2
    • /
    • pp.290-296
    • /
    • 1998
  • Histological changes was investigated in the 4 weeks old rat brain using NMDA (N-methyl-D-asparate) which is capable of mediating excitotoxic events. The changes were occured when the injected NMDA solved in PBS was over $1.0{\mu}g/g$(about 90nM). The necrosis of Purkinje cells in cerebellum and the increasement of coloidal plexus cell number were prevalent. The Purkinje cell number of necrosis were increased according to increasement of amount of injected NMDA. In spite of increasement of degenerated Purkinje cell number, differentiation of new Purkinje cell was not identified because total number of Purkinje cell was not changed. The change of cell number was observed in coloidal plexus cell rather than degeneration of cell. About 5 time increasement was occured. This change may cause increasement of cerebrospinal fluid and the makes mophorogy of brain more round than nomal.

  • PDF

Eudesmin Inhibits Tumor Necrosis Factor-$\alpha$ Production and T cell Proliferation

  • Cho, Jae-Youl;Yoo, Eun-Sook;Baik, Kyoung-Up;Park, Myung-Hwan
    • Archives of Pharmacal Research
    • /
    • v.22 no.4
    • /
    • pp.348-353
    • /
    • 1999
  • Possible antiinflammatory effect of eudesmin were examined by assessing the effects on tumor necrosis factor (TNF)-$\alpha$ production and lymphocyte proliferation as well as cytotoxicity against murine and human macrophages. the compound significantly inhibited TNF-$\alpha$, production by lipopolysaccaride (LPS)-stimulated murine macrophage RAW264.7 without displaying cytotoxicity suggesting that eudesmin may inhibit TNF-$\alpha$ production without any interference of normal cell function. It also significantly attenuated T cell proliferation stimulated by concanavalin A (Con A) in a dose-dependent manner.

  • PDF

Development of a Recombinant Protein Vaccine Based on Cell-Free Protein Synthesis for Sevenband Grouper Epinephelus septemfasciatus Against Viral Nervous Necrosis

  • Kim, Jong-Oh;Kim, Jae-Ok;Kim, Wi-Sik;Oh, Myung-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.10
    • /
    • pp.1761-1767
    • /
    • 2015
  • Sevenband grouper, Epinephelus septemfasciatus, is becoming an important aquaculture species in Korea. However, viral nervous necrosis disease is a large problem causing mass mortality in sevenband grouper aquaculture. Recombinant protein vaccines are one of the best methods to reduce these economic losses. However, the cell-based expression method mainly produces inclusion bodies and requires additional procedures. In this study, we expressed a recombinant viral coat protein of sevenband grouper nervous necrosis virus (NNV) using a cell-free protein synthesis system. The purified recombinant NNV coat protein (rNNV-CP) was injected into sevenband grouper at different doses followed by a NNV challenge. Nonimmunized fish in the first trial (20 μg/fish) began to die 5 days post-challenge and reached 70% cumulative mortality. In contrast, immunized fish also starting dying 5 days postchallenge but lower cumulative mortality (10%) was observed. Cumulative morality in the second trial with different doses (20, 4, and 0.8 μg/fish) was 10%, 40%, and 50%, respectively. These results suggest that rNNV-CP can effectively immunize sevenband grouper depending on the dose administered. This study provides a new approach to develop a recombinant vaccine against NNV infection for sevenband grouper.

Glycochenodeoxycholic Acid Induces Cell Death in Primary Cultured Rat Hepatocyte: Apoptosis and Necrosis

  • Chu, Sang-Hui;Park, Wol-Mi;Lee, Kyung-Eun;Pae, Young-Sook
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.6
    • /
    • pp.565-570
    • /
    • 1999
  • Intracellular accumulation of bile acids in the hepatocytes during cholestasis is thought to be pathogenic in cholestatic liver injury. Due to the detergent-like effect of the hydrophobic bile acids, hepatocellular injury has been attributed to direct membrane damage. However histological findings of cholestatic liver diseases suggest apoptosis can be a mechanism of cell death during cholestatic liver diseases instead of necrosis. To determine the pattern of hepatocellular toxicity induced by bile acid, we incubated primary cultured rat hepatocytes with a hydrophobic bile acid, Glycochenodeoxycholate (GCDC), up to 5 hours. After 5 hours incubation with $400\;{\mu}M$ GCDC, lactate dehydrogenase released significantly. Cell viability, quantitated in propidium iodide stained cells concomitant with fluoresceindiacetate was decreased time- and dose-dependently. Most nuclei with condensed chromatin and shrunk cytoplasm were heavily labelled time- and dose-dependently by a positive TUNEL reaction. These findings suggest that both apoptosis and necrosis are involved in hepatocytes injury caused by GCDC.

  • PDF

AN EXPERIMENTAL STUDY ON MISTLETOE EXTRACT-INDUCED APOPTOSIS IN ORAL SQUAMOUS CELL CARCINOMA (구강편평세포암종에서 미슬토 추출물의 Apoptosis 유도 효과에 대한 실험적 연구)

  • Heo, Gyun-Haeng;Lee, Jae-Hoon;Kim, Chul-Hwan
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.31 no.1
    • /
    • pp.13-23
    • /
    • 2005
  • This study was performed to investigate mistletoe extract-induced apoptosis in oral squamous cell carcinoma. In vivo study, HN22 cells were xenografted in nude mice. After tumor was experimentally induced, mistletoe extract was directly injected on the tumor mass. The specimens were evaluated using light and transmission electron microscopes. In vitro study, HN22 cells were cultured and exposed to mistletoe extract. The cells were evaluated using transmissin electron microscope. To evaluate apoptotic cells, flow cytometric analysis was done. The results were obtained as follows: 1. Light microscopic view of tumor mass showed necrosis at 2-4 weeks. 2. Transmission electron micrographs of tumor mass showed apoptosis and necrosis. 3. In TEM view of cell lines, necrosis and apoptosis were shown with mistletoe extract at $300{\mu}g/ml$, apoptosis was shown with mistletoe extract at $100{\mu}g/ml$. 4. In flow cytometric analysis, early and late apoptosis was shown when using caspase-3Ab and annexin-V, but no significant change was noted when using mebstain and Apo2.7 Ab. In this study, mistletoe extract induced necrosis and apoptosis in the tumor mass was induced by HN22 cells, early and late apoptosis in vitro study. Mistletoe extract was likely to induce cell death in oral squamous cell carcinoma through apoptosis.

Synergistic Effect of Green Tea EGCG Treatment with Gamma Radiation in Ieukemia Cell Necrosis (방사선조사와 병행 처리한 녹차 EGCG의 혈구암세포 사멸촉진 효과)

  • Lee, Hong-Soo;Kim, Jae-Man
    • Journal of radiological science and technology
    • /
    • v.29 no.4
    • /
    • pp.285-291
    • /
    • 2006
  • During cancer therapy, gamma-ray irradiation and treatment of anti-cancer chemicals destroy the normal cells as well as cancer cells. In this study, we investigated the effect of epigallocathechin-gallate(EGCG) extracted from green tea, which is known to have anti-cancer and anti-oxident activities, in order to find out the feasible method to protect the normal cells and to kill the cancer cells efficiently. We investigated the effect of EGCG on the leukemia cell growth and cell necrosis, especially when treated along with gamma radiation. The EGCG inhibited the leukemia cell, HL-60, growth at the appropriate concentration while it exhibited no influence on the normal cell growth. More significantly, it enhanced leukemia cell necrosis when its treatment was combined with gamma irradiation. Simultaneous treatment of EGCG and gamma radiation increased leukemia cell necrosis up to 35% compared with separate treatments. These results suggest that drinking of green tea or co-treatment of EGCG during gamma irradiation therapy may result in better prognosis through enhancement of the tumor cell necrosis and protection of the normal cells.

  • PDF

The serine threonine kinase RIP3: lost and found

  • Morgan, Michael J.;Kim, You-Sun
    • BMB Reports
    • /
    • v.48 no.6
    • /
    • pp.303-312
    • /
    • 2015
  • Receptor-interacting protein kinase-3 (RIP3, or RIPK3) is an essential protein in the "programmed", or "regulated" necrosis cell death pathway that is activated in response to death receptor ligands and other types of cellular stress. Programmed necrotic cell death is distinguished from its apoptotic counterpart in that it is not characterized by the activation of caspases; unlike apoptosis, programmed necrosis results in plasma membrane rupture, thus spilling the contents of the cell and triggering the activation of the immune system and inflammation. Here we discuss findings, including our own recent data, which show that RIP3 protein expression is absent in many cancer cell lines. The recent data suggests that the lack of RIP3 expression in a majority of these deficient cell lines is due to methylation-dependent silencing, which limits the responses of these cells to pro-necrotic stimuli. Importantly, RIP3 expression may be restored in many cancer cells through the use of hypomethylating agents, such as decitabine. The potential implications of loss of RIP3 expression in cancer are explored, along with possible consequences for chemotherapeutic response. [BMB Reports 2015; 48(6): 303-312]

Cell Surface Expression of Tumor Necrosis Factor-Alpha by Activated Rat Astrocytes

  • Chung, Il-Yup;Benveniste, Etty N.
    • BMB Reports
    • /
    • v.29 no.6
    • /
    • pp.530-534
    • /
    • 1996
  • Astrocyte are the major glial cell type in the central nervous system (CNS), and analogous to macrophage, mediates the number of immune responses such as production of cytokines including tumor necrosis factor alpha ($TNF-{\alpha}$) upon activation. $TNF-{\alpha}$ has been implicated in neuroimmunological disorders through killing oligodendrocytes and thus causing demyelination. It has been previously demonstrated that mitogen-activated T cells synthesized a 26 kDa precursor form of $TNF-{\alpha}$ which is bound to the surface of a membrane, and is later secreted as a 17 kDa mature version. In order to examine whether astrocytes would produce the transmembrane form of $TNF-{\alpha}$, astrocytes were stimulated with biological stimuli and the membrane form of $TNF-{\alpha}$ was analyzed by Western blot and FACS analysis. When astrocytes are stimulated with lipopolysaccharide (LPS), $IFN-{\gamma}/LPS$, or $IFN-{\gamma}/IL-1{\beta}$, they were able to express a membrane-anchored $TNF-{\alpha}$ of approximately 26 kDa protein which was immunoreactive to an $anti-TNF-{\alpha}$ antibody, whereas unstimulated astrocytes or astrocytes treated with $IFN-{\gamma}$ or $IL-1{\beta}$ alone was not. Our FACS data were also consistent with the immunoblot analysis. Our result suggests that the membrane form of $TNF-{\alpha}$ expressed by activated astrocytes may cause local damage to oligodendrocytes by direct cell-cell contact and contribute to demyelination observed in multiple sclerosis (MS) and experimental allergic encephalomyelitis (EAE).

  • PDF

Inhibitory Effect of Cynaroside Isolated from Lonicera japonia Thunb on Doxorubicin-induced Necrosis in Human Renal Proximal Tubular HK-2 Cells (인동덩굴로부터 분리된 Cynaroside이 Doxorubicin으로 유도된 인간 근위세뇨관 HK-2 세포의 괴사에 미치는 저해 효과)

  • Nho, Jong Hyun;Jung, Ho Kyung;Lee, Mu Jin;Jang, Ji Hun;Sim, Mi Ok;Jung, Ja Kyun;Jung, Da Eun;An, Byeong Kwan;Cho, Hyun Woo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.25 no.5
    • /
    • pp.322-327
    • /
    • 2017
  • Background: Cynaroside is a flavone, a flavonoid-like compound, known by different names (luteoloside and cinaroside). It is commonly found in Lonicera japonica Thunb., Chrysanthemum moriflium, and Angelica keiskei. The process of cell death has been classified as necrosis and apoptosis. Necrosis refers to unregulated cell death induced by a chemotherapeutic agent. Doxorubicin is an anthracycline anti-cancer drug used to treat acute leukemia, cancer, and lymphoma. However, it induces nephrotoxicity including tubular damage. Therefore, we investigated the protective effect of cynaroside against doxorubicin-induced necrosis in HK-2 cells. Methods and Results: To confirm the beneficial effect of cynaroside on doxorubicin-induced necrosis, HK-2 cells, a human proximal tubule epithelial cell line were treated with $10{\mu}M$ doxorubicin and $80{\mu}M$ cynaroside. Doxorubicin treatment resulted in increased DNA fragmentation, caspase-3 activity and mitochondria hyperactivation during cell necrosis. However, pretreatment with $80{\mu}M$ cynaroside attenuated DNA fragmentation, caspase-3 activity and mitochondria hyperactivation induced by $10{\mu}M$ doxorubicin in HK-2 cells. Conclusions: These results indicated that pretreatment with cynaroside ameliorated doxorubicin-induced necrosis in HK-2 cells. Therefore, cynaroside be used as a therapeutic agent for improving doxorubicin-induced nephrotoxicity. However, further studies are required to evaluated the toxicity of cynaroside treatment in animals and to determine its protective effect against doxorubicin-induced nephrotoxicity in an animal model.

Role of Iridin Isolated from Iris koreana Nakai on Doxorubicin-induced Necrosis in HK-2 Cells, and Effect on Cancer Cells (노랑붓꽃에서 분리된 Iridin의 독소루비신 유도 HK-2 세포 괴사에 대한 역할 및 암세포에 대한 작용)

  • Nho, Jong Hyun;Lee, Ki Ho;Jung, Ho Kyung;Lee, Mu Jin;Jang, Ji Hun;Sim, Mi Ok;Jung, Ja Kyun;Jung, Da Eun;Cho, Hyun Woo
    • Korean Journal of Plant Resources
    • /
    • v.31 no.2
    • /
    • pp.95-101
    • /
    • 2018
  • Doxorubicin is a anti-cancer drugs that interferes with the growth and spread of cancer cells in human body. Doxorubicin is used to treat different types of cancers that affect the ovary, thyoid and lungs, but induced side effect such as nephrotoxicity and cardiotoxicity. Thus, we investigated that the effect of iridin on doxorubicin-induced necrosis in HK-2 cells, a human proximal tubule cell. To confirm effect of iridin on doxorubicin-induced necrosis, HK-2 cells are treated with $10{\mu}M$ doxorubicin and $80{\mu}M$ iridin. $80{\mu}M$ iridin reduced $10{\mu}M$ doxorubicin-induced necrosis, the mitochondrial over activation and caspase-3 activation. However, iridin reduces anti-cancer effect of doxorubicin such as PARP1 and caspase-3 activation, checkpoint proteins (CDK4 and CDK6) in NCI-H1129 cells (Human non-small cell lung cancer cell). In HCT-116 cells (Human colorectan cancer cell), iridin do not increased protein expression of CDK4 and CDK6 decreased by doxorubicin. Results indicate that treatment of iridin was diminished doxorubicin-induced necrosis in HK-2 cells. However, iridin was decreased anti-cancer effect of doxorubicin on NCI-H1229, but not HCT-116. Thus, further experiment are required to iridin treatment on various cancer cells and animal models because effect of iridin different cell type.