• Title/Summary/Keyword: Neck and trunk stabilization exercise

Search Result 4, Processing Time 0.016 seconds

Effects of Neck and Trunk Stabilization Exercise on Balance in Older Adults

  • Song, Gui-bin;Park, Eun-Cho
    • The Journal of Korean Physical Therapy
    • /
    • v.28 no.4
    • /
    • pp.221-226
    • /
    • 2016
  • Purpose: This study was conducted to evaluate the effects of neck and trunk stabilization exercise on static and dynamic balance in older adults. Methods: A total of 30 older adults participated in this study. Participants were randomly assigned to the neck and trunk stabilization exercise group (NTSG) (n=15) or the trunk stabilization exercise group (TSG) (n=15). The NTSG performed a trunk stabilization exercise added to a neck stabilization exercise that included biofeedback. Both groups received training for 30 minutes per day three times per week for eight weeks. The anterior, posterior limit of stability and sway length was used to measure static balance ability, while the timed up and go (TUG) test was used to measure dynamic balance ability. Results: Participants showed significant differences in sway length, anterior limit of stability, posterior limit of stability, and the results of the TUG test between their pre- and post mediation evaluations (p<0.05). The NTSG showed a more significant increase than the TSG (p<0.05). Conclusion: According to the results of this study, both exercises effectively improved static and dynamic balance ability. However, the neck and trunk stabilization exercise is more efficient for increasing the balance ability of older adults.

Effect of Neck and Trunk Stabilization on Onset Time of Trunk Muscle Contraction in the Elderly (목과 몸통 안정화 운동이 노인의 몸통근 수축 개시 시간에 미치는 영향)

  • Park, Eun-Cho;Song, Gui-Bin
    • PNF and Movement
    • /
    • v.15 no.3
    • /
    • pp.291-302
    • /
    • 2017
  • Purpose: The purpose of this study was to describe the effects of neck and trunk stabilization exercise on the onset time of trunk muscle contraction in the elderly. Methods: Elderly subjects were divided into 2 groups: a neck and trunk stabilization exercise group (NTSG) and a control group (CG). The NTSG performed both neck and trunk stabilization exercises and the CG performed gait training on a treadmill, at 30 min per session, 3 times per week, over 8 weeks. Surface electromyography was employed to measure the onset times of trunk muscle contractions in the right anterior deltoid, rectus abdominis, external oblique abdominis, internal oblique abdominis, and erector spinae muscles. Results: The NTSG subjects showed earlier and statistically significant onset of contraction in trunk muscles as compared to the CG. Conclusion: The combination of neck and trunk stabilization exercises may more effectively improve the onset of muscle contractions in the elderly than other types of exercise. The present study's findings may be used as basic data for the development of exercise programs suitable to the elderly, specifically for the design of home exercise programs.

The Immediate Effects of Neck and Trunk Stabilization Exercises on Balance and Gait in Chronic Stroke Patients

  • Choe, Yu-Won;Kim, Myoung-Kwon
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.15 no.4
    • /
    • pp.37-45
    • /
    • 2020
  • PURPOSE: The purpose of this study was to identify the effects of neck stabilization exercise combined with trunk stabilization exercise on balance and gait function in patients with chronic stroke. METHODS: Twenty-two chronic stroke patients were included in this study. The experimental group subjects (n = 11) performed neck stabilization (15 min) and trunk stabilization (15 min) exercises, while the control group subjects (n = 11) performed trunk stabilization exercise only for 30 min. Before and after the intervention, the subjects underwent static balance and gait testing. RESULTS: The 95% confidence ellipse area, center of pressure (COP) path length, and COP average velocity were significantly lower in both groups after the intervention compared to before intervention (p < .05). The average stance force on the affected side increased significantly in both groups after the intervention (p < .05). The changes in the static balance variables were larger in the experimental group than in the control group. The cadence, gait velocity, and single leg support increased significantly in both groups after intervention (p < .05). The changes in the gait variables were larger in the experimental group than in the control group. CONCLUSION: Trunk stabilization is a beneficial intervention, but the combination of neck stabilization with trunk stabilization is a more effective method to increase the gait and static balance in chronic stroke patients.

Effects of the Trunk and Neck Extensor Muscle Activity According to Leg Positionon in Bridging Exercise (교각운동에서 다리의 위치에 따른 목폄근의 활성도에 미치는 영향)

  • Cho, Hyun-Rae;Jung, Da-Eun;Chae, Jung-Byung
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.9 no.1
    • /
    • pp.125-132
    • /
    • 2014
  • PURPOSE: This study aims to determine the optimal knee joint angle and hip joint angle for minimizing the cervical muscle tension and maximizing the muscle activity of the trunk during the bridging exercise for trunk stabilization. METHODS: The bridging exercise in this study included seven forms of exercise: having a knee joint flexion angle of $120^{\circ}$, $90^{\circ}$, $60^{\circ}$, $45^{\circ}$ and hip joint abduction angle of $15^{\circ}$, $10^{\circ}$, $5^{\circ}$. The posture of the bridging exercise was as follows. To prevent the increase of hyper lumbar lordosis during the bridging exercise, the exercise was practiced after maintaining the lumbar neutral position through the pelvic posterior tilting exercise. RESULTS: The abduction angles did not result in statistically significant effects on the cervical erector, external oblique, rectus abdominis and erector spinae muscles. However, in relation to the knee joint angles, during the bridging exercise, statistically significant results were exhibited. CONCLUSION: The knee joint angle affected the muscle activity of the neck muscle. The greater the knee joint angle, the lower the load placed on the neck muscle. In contrast, the load increased as the knee joint angle decreased. In addition, the muscle activity of the neck muscle and trunk muscle increased as the knee joint angle decreased.