• Title/Summary/Keyword: Nebula

Search Result 132, Processing Time 0.025 seconds

High Dispersion Spectra of the Young Planetary Nebula NGC 7027

  • Hyung, Siek;Lee, Seong-Jae;Bok, Jang-Hee
    • Journal of the Korean earth science society
    • /
    • v.36 no.5
    • /
    • pp.419-426
    • /
    • 2015
  • We investigated the high dispersion spectra that had been secured at the center of the planetary nebula NGC 7027 with the Bohyunsan Optical Echelle Spectrograph (BOES) on October, 20, 2009. We analyzed the forbidden lines of [OI], [SII], [OII], [NII], [ClIII], [ArIII], [OIII], [ArIV], [NeIII], [ArV], and [CaV] in the $3770-9225{\AA}$ wavelength region. The expansion velocities were derived from double Gaussian line profiles of the emission lines, after eliminating the subsidiary line broadening effects. The radial variations of the expansion velocities were obtained by projecting the derived expansion velocities: $19.56-31.93kms^{-1}$ onto the equatorial shell elements of the inner and the outer boundaries of the main shell of 2.5(2.1)" and 3.8(3.6)", according to the ionization potential of each ion. Analysis of equatorial shell spectra indicated that the equatorial shell generally expands in an accelerated velocity mode, but the expansion pattern deviates from a linear velocity growth with radial distance. NGC 7027, of which age is about 1000 years or less, might be still at its early stage. During the first few hundred years, plausibly in its early stage, the main shell of PN expands very slowly and, later, it gradually gain its normal expansion speed.

POLARIZATION OF $H_{\alpha}$ WINGS RAMAN-SCATTERED IN SYMBIOTIC STARS (공생별에서의 $H_{\alpha}$날개의 편광연구)

  • BAK JIH-YONG;LEE HEE-WON
    • Publications of The Korean Astronomical Society
    • /
    • v.15 no.spc1
    • /
    • pp.147-151
    • /
    • 2000
  • Symbiotic stars, believed to be binary systems of a mass-losing giant and a white dwarf with an emission nebula, are known to exhibit very broad wings around Hex that extend to $\~10^3km\;s^{-1}$. The wing formation mechanism is not a settled matter and recently Lee (2000) proposed that Raman scattering of Ly$\beta$ by neutral hydrogen is responsible for the broad H$\alpha$ wings. In this model, it is predicted that. the Hex wings will be polarized depending on the geometric and kinematic distribution of the scatterers relative to the UV emission region. In this paper, we investigate the polarization of Hex wings in symbiotic stars. Noting that many symbiotic stars possess bipolar nebular morphology, we assume that the distribution of neutral scatterers follows the similar pattern with a receding velocity of several tens of km $s^{-1}$ that mimics the expansion of the neutral envelope of the nebula. It is found that the red wing is more strongly polarized than the blue and main part and that the polarization direction is along the equatorial plane. We obtain a typical degree of polarization $\~10$ percent, however, it varies depending on the detailed distribution of H I scatterers We conclude that spectropolarimetry will provide very important information on the origin of the Hex wings.

  • PDF

Discovery of a Cloud Collision with the OMC-1

  • Kim, Kwang-Tae;Kim, Youngsik
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.32.3-33
    • /
    • 2017
  • Utilizing both the existing observational data for Orion A and the TRAO $^{13}CO$, $^{12}CO$ data for $1^{\circ}{\times}1^{\circ}$ region centered on M42 collected in 2012, we found a clear piece of evidence for a collision of a cloud with the OMC-1. This cloud has a shape like a long cylinder of ${\sim}0.1pc{\times}2pc$ in size, and has a well developed train of clumps of about a few solar masses, and is situated in the dark dust complex between M42 and M43. The cloud's motion is analysed to be moving at about $2.6km\;s^{-1}$, and is calculated to transverse the Orion Nebula ~2 pc above from the nebula center, toward the direction of about $60^{\circ}$ to the line of sight. This cloud had undergone a tidal splitting about a million years ago and had formed a very thin and long cylindrical core well before being engaged in the collision. General implications of this phenomenon are discussed in relation to star formation mechanisms in the GMC.

  • PDF

Stellar Content of the Massive Young Open Cluster Westerlund 2

  • Hur, Hyeonoh;Park, Byeong-Gon;Sung, Hwankyung;Lim, Beomdu;Chun, Moo-Young;Bessell, Michael S.;Sohn, Sangmo Tony
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.84.1-84.1
    • /
    • 2014
  • We report the spatial distribution of early-type stars and pre-main-sequence (PMS) stars around the starburst type young open cluster Westerlund 2. The early-type were selected from UBVI photometric data, while the PMS members were identified from their X-ray emission and mid-infrared excess. The northern clump of the cluster is composed mainly of PMS stars detected in both optical and X-ray and seems to be coeval to the cluster, while PMS stars in the bright bridge region are highly obscured in optical wavelength. The bright bridge appear to be an on-going star forming region possibly triggered by the strong radiation field from both sides-massive stars in Westerlund 2 and WR 20b. We also found that there are many early-type stars not only in the cluster but also farther from the cluster up to several times of the cluster radius. These early-type stars are well aligned from east to southwest of the cluster. We conclude these early-type stars are members of an OB association in the RCW 49 nebula. This report indicates there is a complex star formation history in Westerlund 2 and its surrounding H II region, the RCW 49 nebula.

  • PDF

CHEMICAL ABUNDANCE ANALYSIS OF M31 AND M33 BASED ON THE SPECTRUM OF HII REGIONS (HII 영역 분광자료를 통한 M31과 M33의 화학원소 결정)

  • HAN SOO RYEON;HYUNG SIEK;PARK HONG-SUH;LEE WOO-BAlK
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.2
    • /
    • pp.67-80
    • /
    • 2001
  • Chemical evolution of galaxies can be understood by studying the spatial distribution of heavy elements. We selected two nearby galaxies, M31 and M33 and investigated spectrum of their HII regions: a) the elec-tron densities have been derived from the [S II] 6717/6731 ratio along with the most recent atomic constants (Hyung & Aller 1996); b) the electron temperatures were determinated from the Pagel's empirical method. Nebula Model (Hyung 1994) has been employed to predict the spectral line intensities which gives the proper chemical abundances. The model would predict the line intensities correctly only when various input parameters such as the effective central star temperatures, gravity log g, model atmosphere as well as the geometry and the nebula physical condition are appropriate. Thus, the determination of chemical abundances of O, S, N of the two nearby galaxies M31 and M33 has been done, which shows a radial dependance of O/H and N/H: decrease with the distance, or increasing electron temperature due to the elemental deficiency. Abundances of M31 appear to be enhanced than those of M33.

  • PDF

He II RAMAN SCATTERED LINE BY NEUTRAL HYDROGEN IN THE BIPOLAR PLANETARY NEBULA M2-9 (나비형 행성상 성운 M2-9에서 He II의 중성 수소에 의한 라만 산란선)

  • 이희원;강영운
    • Journal of Astronomy and Space Sciences
    • /
    • v.18 no.1
    • /
    • pp.33-42
    • /
    • 2001
  • In the spectrum of the young bipolar planetary nebula M2-9 obtained from the 1.5m telescope at the Cerro Tololo Inter-American Observatory, we detected the He II feature at 6545 $\AA$ that are proposed to be formed via Raman scattering by atomic hydrogen. However, in the same spectrum, the He II emission lines at 6527 $\AA$ and 6560 $\AA$ are absent, which implies that the He II emission region is hidden from our line of sight and that the H I scattering region is pretty much extended not to be obscured entirely. We performed photoionization computations to estimate the physical size of the He II emission line region to be $10^{16}cm$, from which the location and dimension of the obscuring circumstellar region are inferred and the temperature of the central star must exceed $10^5K$. The angular size of the circumstellar region responsible for the obscuration of the He II emission region is ~1" with the assumption of the distance 01 kpc to M2-9, which is consistent with the recent image of M2-9 obtained with the Hubble Space Telescope.

  • PDF