• Title/Summary/Keyword: Nebula

Search Result 131, Processing Time 0.024 seconds

Star formation history in the bubble nebula NGC 7635

  • Lim, Beom-Du;Sung, Hwan-Kyung;Kim, J. Serena
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.79.1-79.1
    • /
    • 2012
  • We present here $UBVI$ and H${\alpha}$ photometric results of stellar sources in the bubble nebula NGC 7635. The early type members are selected from the photometric membership criteria. H${\alpha}$ photometry allows us to detect 11 pre-main sequence candidates with H${\alpha}$emission. In addition, we performed PSF photometry for the Spitzer IRAC and MIPS 24${\mu}m$ images from archive (program ID 20726, PI: J. Hester) in order to search for the young stellar objects (YSOs). Total 19 sources are classified as YSOs (7 class I, 11 class II, and 1 transitional disk candidates) in the color-color diagrams according to the classification scheme of Gutermuth et al.. Among them, 7 YSOs have counterparts in optical photometric data. These stars can be divided into two groups at given color indices. It implies that there occurred the star formation events more than twice. We would like to discuss the star formation history in the bubble nebula using the results from SED fitter (Robitaille et al.), color composite image from IRAC bands, and spatial distribution of early type stars and YSOs.

  • PDF

The Spectra Investigation of the Halo Planetary Nebula BoBn 1

  • Hyung, Siek;Otsuka, Masaaki;Tajitsu, Akito;Izumiura, Hideyuki
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.72.2-72.2
    • /
    • 2010
  • The extremely metal-poor halo planetary nebula BoBn 1 has been investigated based on IUE archive data, Subaru/HDS spectra, VLT/UVES archive data, and Spitzer/IRS spectra. We have measured a heliocentric radial velocity of $+191.6\pm1.3\;kms^{-1}$ and expansion velocity 2Vexp of $40.5\pm3.3\;kms^{-1}$ from an average over 300 lines. The estimations of C, N, O, and Ne abundances from the optical recombination lines (ORLs) and Kr, Xe, and Ba from the collisional excitation lines (CELs) are also done. We have detected 5 fluorine and several slow neutron capture elements (the s-process). The amounts of [F/H], [Kr/H], and [Xe/H] suggest that BoBn 1 is the most F-rich among F detected PNe and is a heavy s-process element rich PN. The photo-ionization models built with non-LTE theoretical stellar atmospheres indicate that the progenitor was a 1-1.5 $M_\bigstar$ that would evolve into a white dwarf with an $0.62M_{\odot}$ core mass and $0.09M_{\odot}$ ionized nebula. Careful examination implies that BoBn 1 has evolved from a binary and experienced coalescence during the evolution to become a visible PN. The elemental abundances except N could be explained by a binary model composed of $0.75M_{\odot}+1.5M_{\odot}$ stars.

  • PDF

Spectroscopic Study of the Planetary Nebula NGC 6210: Velocity Structure and Permitted Lines

  • Lee, Seong-Jae;Wi, Jin-Kyung;Hyung, Siek
    • Journal of the Korean earth science society
    • /
    • v.30 no.5
    • /
    • pp.611-621
    • /
    • 2009
  • Using the spectroscopic data secured with the Hamilton Echelle Spectrograph at Lick Observatory, we found the physical condition of the planetary Nebula NGC 6210. The spectral line profiles of the permitted and forbidden lines have been analyzed using IRAF and StarLink/Dipso. The hydrogen number densities ($N_H$) are 2,000-20,000 $cm^{-3}$, and the electron temperatures are 8,100-10,300 K based on the forbidden lines. The expansion velocities, derived from the Full Width at Half Maximum (FWHM) and the double peak of the line profiles, are in the range of 10 to $45\;kms^{-1}$. The expansion velocities imply a shell structure with an accelerated nebular gas. We also derived abundances from the permitted lines of CII, CIII, NII, NIII, OII, and OIII, which may have been formed through the fluorescence mechanism. NGC 6210 is likely to be evolved from a progenitor of more than $3M_{\bullet}$, which had been born near the Galactic plane.

The kinematic properties of stellar groups in the Rosette Nebula: its implication on their formation process

  • Lim, Beomdu;Hong, Jongsuk;Naze, Yael;Park, Byeong-Gon;Hwang, Narae;Lee, Jeong-Eun;Yun, Hyeong-Sik;Park, Sunkyung;Yi, Hee-Weon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.51.1-51.1
    • /
    • 2020
  • The Rosette Nebula is the most actively star-forming region in the Monoceros OB2 association. This region hosts more than three stellar groups, including the most populous group NGC 2244 at the center of the region and the smaller stellar groups around the border of the H II bubble. To trace their formation process, we investigate the kinematic properties of these groups using the Gaia astrometric data and high-resolution spectra taken from observation with Hectochelle on MMT. The proper motions of stars in NGC 2244 show a pattern of radial expansion. The signature of cluster rotation is also detected from their radial velocities. On the other hand, the small groups appear to be physically associated with some clouds at the ridge of the H II region. Among them, the group near the eastern pillar-like gas structure shows the signature of feedback-driven star formation. In this presentation, we will further discuss the formation process and dynamical evolution of the stellar groups in the Rosette Nebula, based on the observation and results of N-body simulations.

  • PDF