• Title/Summary/Keyword: Nebula

Search Result 132, Processing Time 0.021 seconds

Gamma-ray Emission from Globular Clusters

  • Tam, Pak-Hin T.;Hui, Chung Y.;Kong, Albert K. H.
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.1
    • /
    • pp.1-11
    • /
    • 2016
  • Over the last few years, the data obtained using the Large Area Telescope (LAT) aboard the Fermi Gamma-ray Space Telescope has provided new insights on high-energy processes in globular clusters, particularly those involving compact objects such as MilliSecond Pulsars (MSPs). Gamma-ray emission in the 100 MeV to 10 GeV range has been detected from more than a dozen globular clusters in our galaxy, including 47 Tucanae and Terzan 5. Based on a sample of known gammaray globular clusters, the empirical relations between gamma-ray luminosity and properties of globular clusters such as their stellar encounter rate, metallicity, and possible optical and infrared photon energy densities, have been derived. The measured gamma-ray spectra are generally described by a power law with a cut-off at a few gigaelectronvolts. Together with the detection of pulsed γ-rays from two MSPs in two different globular clusters, such spectral signature lends support to the hypothesis that γ-rays from globular clusters represent collective curvature emission from magnetospheres of MSPs in the clusters. Alternative models, involving Inverse-Compton (IC) emission of relativistic electrons that are accelerated close to MSPs or pulsar wind nebula shocks, have also been suggested. Observations at >100 GeV by using Fermi/LAT and atmospheric Cherenkov telescopes such as H.E.S.S.-II, MAGIC-II, VERITAS, and CTA will help to settle some questions unanswered by current data.

CO J=2-1 LINE OBSERVATIONS TOWARD THE SUPERNOVA REMNANT G54.1+0.3

  • Lee, Jung-Won;Koo, Bon-Chul;Lee, Jeong-Eun
    • Journal of The Korean Astronomical Society
    • /
    • v.45 no.5
    • /
    • pp.117-125
    • /
    • 2012
  • We present $^{12}CO$ J = 2-1 line observations of G54.1+0.3, a composite supernova remnant with a mid-infrared (MIR) loop surrounding the central pulsar wind nebula (PWN). We map an area of $12^{\prime}{\times}9^{\prime}$ around the PWN and its associated MIR loop. We confirm two velocity components that have been proposed to be possibly interacting with the PWN/MIR-loop; the +53 km $s^{-1}$ cloud, which appears in contact with the eastern boundary of the PWN and the +23 km $s^{-1}$ cloud, which has CO emission coincident with the MIR loop. However, we have not found a direct evidence for the interaction in either of these clouds. Instead, we detected an 5'-long arc-like cloud at +15-+23 km $s^{-1}$ with a systematic velocity gradient of ~3 km $s^{-1}$ $arcmin^{-1}$ and broad-line emitting CO gas with widths (FWHM) of ${\leq}7km\;s^{-1}$ in the western interior of the supernova remnant. We discuss their association with the supernova remnant.

High Resolution Near Infrared Spectrum of NGC 7023

  • Le, Huynh Anh N.;Pak, Soojong;Lee, Hye-In;Lee, Jae-Joon;Nguyen-Luong, Quang;Kaplan, Kyle;Jaffe, Daniel T.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.93.1-93.1
    • /
    • 2014
  • The reflection nebula NGC 7023 is a typical example of a photodissociation region (PDR), which consists of high density molecular gas that is exposed to an intense UV radiation field. The source of the UV photons in NGC 7023 is the young pre-main-sequence Be star HD 200755. We present our near-infrared high-resolution (R ~ 40,000) spectrum of NGC 7023, covering a region of $1{\times}15$ arcseconds, observed during the commissioning runs of IGRINS (Immersion GRating near-INfrared Spectrometer). The spectrum shows many strong narrow emission lines that arise from the molecular rovibrational transitions of H2. From the intensity ratios between these H2 lines, we investigate physical conditions within the PDR such as the temperature, density, and pressure. The high spectral resolution of IGRINS allows us to resolve the velocity field of the PDR. In addition, we compare the IGRINS spectrum to Cloudy PDR model.

  • PDF

A Dynamic Power Management System for Multiple Client in Cloud Computing Environment (클라우드 환경에서 다중 클라이언트를 위한 동적 전원관리 시스템)

  • Cha, Seung-Min;Lee, Bong-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.2
    • /
    • pp.213-221
    • /
    • 2012
  • In this paper, a dynamic power management system is proposed to reduce energy consumption for multiple clients in cloud computing environments. The proposed system monitors both keyboard and mouse input from the user, available memory, and CPU usage in the virtual machine. If the system detects no keyboard and mouse input for a certain amount of time and both available memory and CPU usage reach predefined threshold value, the manager in the virtual machine orders the client to shutdown the client machine, which results in significant power save. The developed system is applied to the real university computer lab and the performance of the system is evaluated.

High Dispersion Line Profiles of the Planetary Nebula NGC 6833 and its Implication

  • Lee, Seong-Jae;Hyung, Siek
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.73.1-73.1
    • /
    • 2010
  • Using the spectroscopic data secured with the Hamilton Echelle Spectrograph attached to a 3-m telescope at the Lick Observatory, we derived the expansion velocities from various line profiles in the 3600 $\AA$ to 10,000 $\AA$ based on the full width at half maximum and double peak of the high dispersion line profiles. The symmetrical shapes of the permitted line profiles indicate that the permitted line zone is symmetrical e.g., a spherical shell or bipolar + torus structures, which might be evidence of relatively recent ejection from the central star. Most other stronger forbidden lines might be coming from a main shell which appears as a bilateral symmetrical morphology, seen in HST and other ground-based telescopic images. The overall expansion velocities of this main shell structure that are responsible for most lines, seem to show the Hubble type expansion, i.e., accelerating shell. The faster expansion velocities of the permitted OII, NII, NIII and perhaps CII lines that do not suit to the Hubble type expansion, imply the existence of a somewhat smaller inner shell inside the outer main shell. We conclude that the nebular shell consists of a swiftly expanding inner shell and an outer normal shell excited by a central star of about 55,000K. The former compact zone appears to be responsible for the permitted C, N, and O lines while the latter extended shell appears to be responsible for H, He, and forbidden lines. We present some evidence that NGC 6833 be a member of the Galactic halo.

  • PDF

A multi-wavelength study of N63A: A SNR within an H II region in the LMC.

  • Aliste C., Rommy L.S.E.;Koo, Bon-Chul;Lee, Yong-Hyun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.54.3-55
    • /
    • 2017
  • The nature and physical environments of SNRs are diverse, and for this reason, the understanding of the properties of nearby SNRs is useful in interpreting the emission from SNRs in remote galaxies where we cannot resolve them. In this regard, the LMC is a unique place to study SNRs due to its proximity, location, and composition compared with our galaxy. We carried out a multi-wavelength study of SNR N63A in the LMC, a young remnant of the SN explosion of one of the most massive (> 40 Msun) stars in a cluster. It is currently expanding within a large H II region formed by OB stars in the cluster and engulfing a molecular cloud (MC). As such, N63A is a prototypical SNR showing the impact of SN explosion on the cluster and its environment. Its morphology varies strongly across the wave bands, e.g. the size in X-ray is three times larger than in optical. However, the bright optical nebula would correspond to a MC swept up by the SNR, and consequently the interaction SNR-MC is limited to the central portion of the SNR. We aimed to study the overall structure of N63A, using near-IR imaging and spectroscopic observations to obtain the physical parameters of the atomic shocks, and also to understand how the SNR- MC interaction works and reveal the structure of the shocked cloud as well as the consequences of the impact of the SNR shock on the MC, comparing information obtained in different wavelengths.

  • PDF

EFFECTS OF COLLISIONAL DE-EXCITATION ON THE RESONANCE DOUBLET FLUX RATIOS IN SYMBIOTIC STARS AND PLANETARY NEBULAE

  • Kang, Eun-Ha;Lee, Hee-Won
    • Journal of The Korean Astronomical Society
    • /
    • v.41 no.3
    • /
    • pp.49-58
    • /
    • 2008
  • Resonance doublets including O VI 1032, 1038, NV 1239, 1243 and C IV 1548, 1551 constitute prominent emission lines in symbiotic stars and planetary nebulae. Spectroscopic studies of symbiotic stars and planetary nebulae from UV space telescopes show various line ratios of these doublets deviating from the theoretical ratio of 2:1. Using a Monte Carlo technique, we investigate the collisional de-excitation effect in these emission nebulae. We consider an emission nebula around the hot component of a symbiotic star characterized by the collisional de-excitation probability $p_{coll}\;{\sim}\;10^{-3}\;-\;10^{-4}$ per each resonance scattering, and the line center optical depths for major resonance doublets in the range ${\tau}_0\;{\sim}\;10^2\;-\;10^5$. We find that various line ratios are obtained when the product $p_{coll}{\tau}_0$ is of order unity. Our Monte Carlo calculations show that the flux ratio can be approximately fitted by a linear function of ${\log}{\tau}_0$ when ${\tau}_0p_{coll}\;{\sim}\;1$. It is briefly discussed that this corresponds to the range relevant to the emission nebulae of symbiotic stars.

DEVELOPMENT OF THE GOHEUNG INTERFEROMETER FOR EDUCATION AND RESEARCH, AND OBSERVATION OF SUN AT 12 GHz

  • Han, Junghwan;Lee, Bangwon;Jung, Sang-Eun;Ha, Ji-Sung;Jang, Bi-Ho;Han, Inwoo;Hong, S.S.;Park, Young-Sun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.55-55
    • /
    • 2014
  • 국립 고흥 청소년 우주 체험 센터는 연구와 학생들의 교육을 위해 12GHz 전파 간섭계를 개발했다. 저비용으로 제작하기 위하여 상용 제품들을 주로 사용하였고, 해변 가에 위치한 센터 특성상 강한 바다 바람과 부식에 견디도록 제작하였다. 고흥 간섭계는 직경 1.8m의 off-axis parabola 안테나 3대로 이루어져 있으며, 각 안테나 사이의 기선길이는 4, 19, 20m로, 해상도가 최대 약 4'인 영상을 얻을 수 있다. 수신기는 중심 주파수가 12.177GHz, 대역폭이 10MHz이며 메탄올 천이선과 연속파를 관측할 수 있는 시스템이다. 시스템온도는 100-200K로 추정된다. 각 수신기에서 나오는 신호는 digitizer로 읽어 들이며, 병렬 처리 프로그램으로 software correlation을 수행한다. 태양, 달, Crab Nebula, 그리고 Cassiopeia A 등을 관측하여 프린지를 검출하는데 성공하였다. 가시함수를 구하기 위한 프린지 fitting model의 파라미터들은 기선벡터의 측량과 점전파원 관측을 통하여 정밀하게 측정하였다. 태양에 대한 영상관측결과를 논의하고자 한다.

  • PDF

Post-outburst observation of HBC722 in Pelican nebula

  • Yang, Yuna;Park, Won-Kee;Sung, Hyunil;Lee, Sanggak;Yoon, Tae-Seog;Lee, Jeongeun;Kang, Wonseok;Park, Keunhong;Cho, Dong-Hwan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.59.1-59.1
    • /
    • 2013
  • HBC722 (also known as LkHa 188-G4 and PTF 10qpf; A. Miller et al., 2011) is one of the FU Orionis-like young stellar objects which outbursted in August 2010 (Semkov et al., 2010). We have been monitoring the post-outburst phase of this object since November 2010 with Korean Astronomy and Space Science Institute Near Infrared Camera System (KASINICS), at Bohyunsan Optical Astronomy Observatory (BOAO). Four filters, J, H, Ks, and H2 band, were used for this observation. We did aperture photometry to find photometric variation. The light curve shows a long period brightness change. After decrease of the brightness, which was reported at the KAS 2011 fall meeting, HBC722 brightens up slowly now. However we cannot confirm any short period variations, previously reported by Green et al (2013), due to large scatters in the obtained light curve.

  • PDF

Dust Scattering Simulation in Taurus-Auriga-Perseus(TPA) Complex

  • Lim, Tae-Ho;Seon, Kwang-Il;Min, Kyung-Wook
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.88.1-88.1
    • /
    • 2011
  • We present the FIMS/SPEAR FUV continuum map of The Taurus - Auriga - Perseus (TPA) complex, which is one of the largest local association of dark clouds located in (l,b)~([152,180],[-28,0]). We also present the result of FUV dust scattering simulation, which is based on Monte Carlo Radiative Transfer(MCRT) technique. Before the simulation we generate the model cloud using Hipparcos 77834 stars and the calculation of their E(B-V). From the density-integrated image and the cross section image of the modeled cloud we confirmed that the Taurus cloud is located in ~130pc. The cloud north of the California nebula is known for its two layered structure and we confirm that using the cross section image of the modeled cloud. In our modeled cloud, that two clouds are located at ~130pc and at ~300pc, respectively. Over the whole region the result image of simulation is well correlated with the diffuse FUV observed with FIMS/SPEAR. The dense core of the Taurus cloud, however, is not revealed completely in the map.

  • PDF