• Title/Summary/Keyword: Nearest-neighbor search queries

Search Result 20, Processing Time 0.02 seconds

An Efficient Multidimensional Index Structure for Parallel Environments

  • Bok Koung-Soo;Song Seok-Il;Yoo Jae-Soo
    • International Journal of Contents
    • /
    • v.1 no.1
    • /
    • pp.50-58
    • /
    • 2005
  • Generally, multidimensional data such as image and spatial data require large amount of storage space. There is a limit to store and manage those large amounts of data in single workstation. If we manage the data on parallel computing environment which is being actively researched these days, we can get highly improved performance. In this paper, we propose a parallel multidimensional index structure that exploits the parallelism of the parallel computing environment. The proposed index structure is nP(processor)-nxmD(disk) architecture which is the hybrid type of nP-nD and 1P-nD. Its node structure in-creases fan-out and reduces the height of an index. Also, a range search algorithm that maximizes I/O parallelism is devised, and it is applied to k-nearest neighbor queries. Through various experiments, it is shown that the proposed method outperforms other parallel index structures.

  • PDF

k-Nearest Neighbor Query Processing in Multi-Dimensional Indexing Structures (다차원 인덱싱 구조에서의 k-근접객체질의 처리 방안)

  • Kim Byung Gon;Oh Sung Kyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.1 s.33
    • /
    • pp.85-92
    • /
    • 2005
  • Recently, query processing techniques for the multi-dimensional data like images have been widely used to perform content-based retrieval of the data . Range query and Nearest neighbor query are widely used multi dimensional queries . This paper Proposes the efficient pruning strategies for k-nearest neighbor query in R-tree variants indexing structures. Pruning strategy is important for the multi-dimensional indexing query processing so that search space can be reduced. We analyzed the Pruning strategies and perform experiments to show overhead and the profit of the strategies. Finally, we propose best use of the strategies.

  • PDF

Efficient Path Finding Based on the $A^*$ algorithm for Processing k-Nearest Neighbor Queries in Road Network Databases (도로 네트워크에서 $A^*$ 알고리즘을 이용한 k-최근접 이웃 객체에 대한 효과적인 경로 탐색 방법)

  • Shin, Sung-Hyun;Lee, Sang-Chul;Kim, Sang-Wook;Lee, Jung-Hoon;Im, Eul-Kyu
    • Journal of KIISE:Databases
    • /
    • v.36 no.5
    • /
    • pp.405-410
    • /
    • 2009
  • This paper proposes an efficient path finding scheme capable of searching the paths to k static objects from a given query point, aiming at both improving the legacy k-nearest neighbor search and making it easily applicable to the road network environment. To the end of improving the speed of finding one-to-many paths, the modified A* obviates the duplicated part of node scans involved in the multiple executions of a one-to-one path finding algorithm. Additionally, the cost to the each object found in this step makes it possible to finalize the k objects according to the network distance from the candidate set as well as to order them by the path cost. Experiment results show that the proposed scheme has the accuracy of around 100% and improves the search speed by $1.3{\sim}3.0$ times of k-nearest neighbor searches, compared with INE, post-Dijkstra, and $na{\ddot{i}}ve$ method.

Shape-Based Leaf Image Retrieval System (모양 기반의 식물 잎 이미지 검색 시스템)

  • Nam Yun-Young;Hwang Een-Jun
    • The KIPS Transactions:PartD
    • /
    • v.13D no.1 s.104
    • /
    • pp.29-36
    • /
    • 2006
  • In this paper, we present a leaf image retrieval system that represents and retrieves leaf images based on their shape. For more effective representation of leaf images, we improved an existing MPP algorithm. Also, in order to reduce the response time, we proposed a new dynamic matching algorithm at basically revises the Nearest Neighbor search. The system provides users with an interface for uploading query images or tools to generate queries based on shape features and retrieves images based on their similarity. For convenience, users are allowed to easily query images by sketching leaf shape or leaf arrangement on the web. In the experiment, we constructed an image database of Korean native plants and measured the system performance by counting the number of similar images retrieved for queries.

Analysis of Morton Code Conversion for 32 Bit IEEE 754 Floating Point Variables (IEEE 754 부동 소수점 32비트 float 변수의 Morton Code 변환 분석)

  • Park, Taejung
    • Journal of Digital Contents Society
    • /
    • v.17 no.3
    • /
    • pp.165-172
    • /
    • 2016
  • Morton codes play important roles in many parallel GPU applications for the nearest neighbor (NN) search in huge data and queries with its applications growing. This paper discusses and analyzes the meaning of Tero Karras's 32-bit 'unsigned int' Morton code algorithm for three-dimensional spatial information in $[0,1]^3$ and its geometric implications. Based on this, this paper proposes 64-bit 'unsigned long long' version of Morton code and compares the results in both CPU vs. GPU and 32-bit vs. 64-bit versions. The proposed GPU algorithm runs around 1000 times faster than the CPU version.

Design and Implement of a Framework for a Hybrid Broadcast System using Voronoi Diagram for NN Search

  • Seokjin Im
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.2
    • /
    • pp.22-30
    • /
    • 2023
  • The portable mobile devices with high performance and high speed 5G network activate and explode the demands for ubiquitous information services that remove the limitations of time for the communication and places to request for the information. NN (Nearest Neighbor) search is one of the most important types of queries to be processed efficiently in the information services. Various indexes have been proposed to support efficient NN search in the wireless broadcast system. The indexes adopting Hilbert curve, grid partition or Voronoi diagram enable the clients to search for NN quickly in the wireless broadcast channel. It is necessary that an efficient means to evaluate the performances of various indexes. In this paper, we propose an open framework that can adopt a variety of indexing schemes and evaluate and compare the performances of them. The proposed framework is organized with open and flexible structure that can adopt hybrid indexing schemes extensible to Voronoi diagram as well as simple indexing schemes. With the implemented framework, we demonstrate the efficiency and scalability and flexibility of the proposed framework by evaluating various indexing schemes for NN query.

Efficient Processing of k-Farthest Neighbor Queries for Road Networks

  • Kim, Taelee;Cho, Hyung-Ju;Hong, Hee Ju;Nam, Hyogeun;Cho, Hyejun;Do, Gyung Yoon;Jeon, Pilkyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.10
    • /
    • pp.79-89
    • /
    • 2019
  • While most research focuses on the k-nearest neighbors (kNN) queries in the database community, an important type of proximity queries called k-farthest neighbors (kFN) queries has not received much attention. This paper addresses the problem of finding the k-farthest neighbors in road networks. Given a positive integer k, a query object q, and a set of data points P, a kFN query returns k data objects farthest from the query object q. Little attention has been paid to processing kFN queries in road networks. The challenge of processing kFN queries in road networks is reducing the number of network distance computations, which is the most prominent difference between a road network and a Euclidean space. In this study, we propose an efficient algorithm called FANS for k-FArthest Neighbor Search in road networks. We present a shared computation strategy to avoid redundant computation of the distances between a query object and data objects. We also present effective pruning techniques based on the maximum distance from a query object to data segments. Finally, we demonstrate the efficiency and scalability of our proposed solution with extensive experiments using real-world roadmaps.

Design of an Efficient Parallel High-Dimensional Index Structure (효율적인 병렬 고차원 색인구조 설계)

  • Park, Chun-Seo;Song, Seok-Il;Sin, Jae-Ryong;Yu, Jae-Su
    • Journal of KIISE:Databases
    • /
    • v.29 no.1
    • /
    • pp.58-71
    • /
    • 2002
  • Generally, multi-dimensional data such as image and spatial data require large amount of storage space. There is a limit to store and manage those large amount of data in single workstation. If we manage the data on parallel computing environment which is being actively researched these days, we can get highly improved performance. In this paper, we propose a parallel high-dimensional index structure that exploits the parallelism of the parallel computing environment. The proposed index structure is nP(processor)-n$\times$mD(disk) architecture which is the hybrid type of nP-nD and lP-nD. Its node structure increases fan-out and reduces the height of a index tree. Also, A range search algorithm that maximizes I/O parallelism is devised, and it is applied to K-nearest neighbor queries. Through various experiments, it is shown that the proposed method outperforms other parallel index structures.

Performance Enhancement of a DVA-tree by the Independent Vector Approximation (독립적인 벡터 근사에 의한 분산 벡터 근사 트리의 성능 강화)

  • Choi, Hyun-Hwa;Lee, Kyu-Chul
    • The KIPS Transactions:PartD
    • /
    • v.19D no.2
    • /
    • pp.151-160
    • /
    • 2012
  • Most of the distributed high-dimensional indexing structures provide a reasonable search performance especially when the dataset is uniformly distributed. However, in case when the dataset is clustered or skewed, the search performances gradually degrade as compared with the uniformly distributed dataset. We propose a method of improving the k-nearest neighbor search performance for the distributed vector approximation-tree based on the strongly clustered or skewed dataset. The basic idea is to compute volumes of the leaf nodes on the top-tree of a distributed vector approximation-tree and to assign different number of bits to them in order to assure an identification performance of vector approximation. In other words, it can be done by assigning more bits to the high-density clusters. We conducted experiments to compare the search performance with the distributed hybrid spill-tree and distributed vector approximation-tree by using the synthetic and real data sets. The experimental results show that our proposed scheme provides consistent results with significant performance improvements of the distributed vector approximation-tree for strongly clustered or skewed datasets.

An Improved Skyline Query Scheme for Recommending Real-Time User Preference Data Based on Big Data Preprocessing (빅데이터 전처리 기반의 실시간 사용자 선호 데이터 추천을 위한 개선된 스카이라인 질의 기법)

  • Kim, JiHyun;Kim, Jongwan
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.5
    • /
    • pp.189-196
    • /
    • 2022
  • Skyline query is a scheme for exploring objects that are suitable for user preferences based on multiple attributes of objects. Existing skyline queries return search results as batch processing, but the need for real-time search results has increased with the advent of interactive apps or mobile environments. Online algorithm for Skyline improves the return speed of objects to explore preferred objects in real time. However, the object navigation process requires unnecessary navigation time due to repeated comparative operations. This paper proposes a Pre-processing Online Algorithm for Skyline Query (POA) to eliminate unnecessary search time in Online Algorithm exploration techniques and provide the results of skyline queries in real time. Proposed techniques use the concept of range-limiting to existing Online Algorithm to perform pretreatment and then eliminate repetitive rediscovering regions first. POAs showed improvement in standard distributions, bias distributions, positive correlations, and negative correlations of discrete data sets compared to Online Algorithm. The POAs used in this paper improve navigation performance by minimizing comparison targets for Online Algorithm, which will be a new criterion for rapid service to users in the face of increasing use of mobile devices.