• 제목/요약/키워드: Nearest-Neighbor Retrieval

검색결과 51건 처리시간 0.016초

퍼지 K-Nearest Neighbor에 의한 정보검색시스템의 성능 향상 (Performance Improvement of Information Retrieval System using Fuzzy K-Nearest Neighbor)

  • 현우석
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2005년도 춘계학술대회 학술발표 논문집 제15권 제1호
    • /
    • pp.367-369
    • /
    • 2005
  • 현대인들이 계속 쏟아지는 정보로부터 자신에게 필요한 정보만을 제한된 시간 안에 검색하는 일은 쉬운 일이 아니다. 컴퓨터를 이용하여 제한된 시간 내에 원하는 정보를 검색하고자 하는 정보검색 분야에서는 성능을 향상시키기 위한 연구가 활발히 진행되어 오고 있다. 본 논문에서는 정보검색 시스템의 성능을 향상시키고자 퍼지 K-Nearest Neighbor에 의한 정보검색시스템(IRS-FKNN: Information Retrieval System using Fuzzy K-Nearest Neighbor)을 제안한다. 제안하는 시스템은 기존의 시스템과 비교했을 때 검색결과의 신뢰성을 높이게 되어 시스템의 성능을 향상시키게 되었다.

  • PDF

내용 기반 멀티미디어 정보 검색을 위한 근사 k-최근접 데이타 탐색 알고리즘 (An Approximate k-Nearest Neighbor Search Algorithm for Content- Based Multimedia Information Retrieval)

  • 송광택;장재우
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제27권2호
    • /
    • pp.199-208
    • /
    • 2000
  • 내용 기반 멀티미디어 정보 검색에서 유사성에 기반한 k-최근접 데이타 탐색 질의는 매우 중요한 질의이다 일반적으로 멀티미디어 데이타는 고차원 특정 벡터로 표현되기 때문에 기존의 k-최근접 탐색 알고리즘은 멀티미디어 정보 검색에 효율적이지 못하다. 따라서 이러한 응용을 위해서는 다소 근사적 검색 결과를 가져오더라도 빠른 검색 성능을 제공하는 근사 k-최근접 탐색 알고리즘이 요구된다. 이를 위해 본 논문에서는 고차원 데이타를 위한 새로운 근사 k-최근접 탐색 알고리즘을 제안한다. 아울러, 제안하는 근사 k-최근접 탐색 알고리즘을 기존의 알고리즘과 검색 성능변에서 성능 평가를 수행한다. 성능 평가 결과, 기존 알고리즘의 검색 성능을 크게 개선할 수 있었다.

  • PDF

vp tree에서 효과적인 k-Nearest Neighbor 검색 방법 (Effective k-Nearest Neighbor Search method based on vp tree)

  • 김민욱;윤경로
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2010년도 한국컴퓨터종합학술대회논문집 Vol.37 No.1(C)
    • /
    • pp.156-159
    • /
    • 2010
  • vp tree는 기준점(vantage point)과의 거리를 기준으로 데이터베이스 내의 자료를 색인하는 자료구조이다. 멀티미디어 자료 검색에서 비슷한 정도는 객체간의 거리를 바탕으로 비교하고, vp tree 색인 구조는 이 과정을 내포하고 있기 때문에 최근 멀티미디어 검색 연구에서 많이 사용되고 있다. 검색 방법에는 query와 가장 가까운 대상을 찾는 Nearest Neighbor Search, 또는 query와 가까운 k등까지를 검색하는 k-Nearest Neighbor Search가 있다. 본 논문에서는 Content-based retrieval에서 최근 자주 사용되는 vp tree에서 효과적인 k-NNS 방법을 제안하고, 기존의 전형적인 k-NNS 방법과의 비교 실험 결과를 보인다.

  • PDF

Case-Based Reasoning Cost Estimation Model Using Two-Step Retrieval Method

  • Lee, Hyun-Soo;Seong, Ki-Hoon;Park, Moon-Seo;Ji, Sae-Hyun;Kim, Soo-Young
    • 토지주택연구
    • /
    • 제1권1호
    • /
    • pp.1-7
    • /
    • 2010
  • Case-based reasoning (CBR) method can make estimators understand the estimation process more clearly. Thus, CBR is widely used as a methodology for cost estimation. In CBR, the quality of case retrieval affects the relevance of retrieved cases and hence the overall quality of the reminding capability of CBR system. Thus, it is essential to retrieve relevant past cases for establishing a robust CBR system. Case retrieval needs the following tasks to obtain appropriate case(s); indexing, search, and matching (Aamodt and Plaza 1994). However, the previous CBR researches mostly deal with matching process that has limits such as accuracy and efficiency of case retrieval. In order to address this issue, this research presents a CBR cost model for building projects that has two-step retrieval process: decision tree and nearest neighbor methods. Specifically, the proposed cost model has indexing, search and matching modules. Features in the model are divided into shape-based and scale-based attributes. Based on these, decision tree is established for facilitating the search task and nearest neighbor method was utilized for matching task. In regard to applying nearest neighbor method, attribute weights are assigned using GA optimization and similarity is calculated using the principle of distance measuring. Thereafter, the proposed CBR cost model is developed using 174 cases and validated using 12 test cases.

장애물이 존재하는 검색공간에서 역최대근접질의 처리방법에 관한 연구 (The Processing Method for a Reverse Nearest Neighbor Queries in a Search Space with the Presence of Obstacles)

  • 선휘준;김홍기
    • 융합보안논문지
    • /
    • 제17권2호
    • /
    • pp.81-88
    • /
    • 2017
  • 암호화된 공간데이터베이스와 같은 최근의 여러 응용에서는 질의 기준이 최대근접객체가 되는 객체들을 찾는 역최대 근접질의가 자주 발생한다. 실세계의 검색공간에는 강, 호수 그리고 고속도로 등과 같은 다양한 장애물이 존재하며, 이러한 환경에서 검색성능을 높이기 위해서는 장애물을 고려한 검색거리 측도가 반드시 필요하다. 본 연구에서는 장애물이 존재하는 검색공간에서 역최대근접질의 처리를 최적화하기 위한 검색거리 측도들과 질의처리 알고리즘을 제시한다.

Random Forest 분류기와 Bag-of-Feature 특징 히스토그램을 이용한 의료영상 자동 분류 및 검색 (Medical Image Classification and Retrieval Using BoF Feature Histogram with Random Forest Classifier)

  • 손정은;고병철;남재열
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제2권4호
    • /
    • pp.273-280
    • /
    • 2013
  • 본 논문에서는 의료영상의 특성을 반영하여 픽셀 그래디언트의 방향 값을 특징으로 하는 OCS-LBP (Oriented Center Symmetric Local Binary Patterns) 특징을 개발하고 BoF(Bag-of-Feature)와 Random Forest 분류기를 이용한 영상 검색 방법을 제안한다. 학습영상에서 추출된 특징 값은 code book 으로 군집화 되고, 각 영상들은 code book을 통해 의미 있는 새로운 차원인 BoF특징으로 변환된다. 이렇게 추출된 BoF특징은 Random Forest 분류기에 적용되고 학습된 분류기에 의해 유사한 특성을 갖는 N개의 클래스별로 분류되게 된다. 질의 영상이 입력되면 동일한 OCS-LBP특징이 추출되고 code book을 통해 BoF특징이 추출된다. 전통적인 내용기반 영상검색과는 다르게, 본 논문에서는 질의 영상에서 추출된 BoF특징이 학습된 Random Forest에 적용되어 가장 유사한 K-근접 이웃 (K-nearest neighbor) 클래스들을 선택하고 선택된 클래스들에 포함된 영상들에 대해서만 질의 영상과의 BoF 유사도 측정을 통해 최종 유사한 영상을 검색하게 된다. 실험결과에서 본 논문에서 제안하는 방법은 빠르고 우수한 검색 성능을 보여 주었다.

A KD-Tree-Based Nearest Neighbor Search for Large Quantities of Data

  • Yen, Shwu-Huey;Hsieh, Ya-Ju
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권3호
    • /
    • pp.459-470
    • /
    • 2013
  • The discovery of nearest neighbors, without training in advance, has many applications, such as the formation of mosaic images, image matching, image retrieval and image stitching. When the quantity of data is huge and the number of dimensions is high, the efficient identification of a nearest neighbor (NN) is very important. This study proposes a variation of the KD-tree - the arbitrary KD-tree (KDA) - which is constructed without the need to evaluate variances. Multiple KDAs can be constructed efficiently and possess independent tree structures, when the amount of data is large. Upon testing, using extended synthetic databases and real-world SIFT data, this study concludes that the KDA method increases computational efficiency and produces satisfactory accuracy, when solving NN problems.

모양 기반의 식물 잎 이미지 검색 시스템 (Shape-Based Leaf Image Retrieval System)

  • 남윤영;황인준
    • 정보처리학회논문지D
    • /
    • 제13D권1호
    • /
    • pp.29-36
    • /
    • 2006
  • 본 논문에서는 식물 잎 모양을 기반으로 이미지를 표현하고 검색하는 식물 잎 이미지 검색 시스템을 보인다. 보다 효과적인 잎의 모양 표현을 위하여, MPP(Minimum Perimeter Polygons) 알고리즘을 개선하였고, 처리시간을 줄이기 위하여, NN(Nearest Neighbor) 검색을 개선한 동적 매칭알고리즘을 제안하였다. 본 시스템은 사용자에게 질의 이미지를 업로드하는 인터페이스를 제공하거나 모양 특징에 기반한 질의를 생성하는 도구를 제공하고 유사도에 따른 이미지를 검색한다. 검색의 편의성을 위해, 웹상에서 잎 모양과 잎차례를 스케치하여 손쉽게 질의할 수 있게 하였다. 실험에서는, 한국에 자생하는 식물 이미지 데이터베이스를 구축하였으며, 질의를 통해 검색된 유사한 이미지의 개수를 기반으로 성능을 평가하였다.

모양기반 식물 잎 이미지 검색을 위한 표현 및 매칭 기법 (A Representation and Matching Method for Shape-based Leaf Image Retrieval)

  • 남윤영;황인준
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제32권11호
    • /
    • pp.1013-1020
    • /
    • 2005
  • 본 논문은 모양 특성을 이용한 효과적인 식물 잎 이미지 검색 시스템을 제시한다. 잎 이미지의 더 효과적인 표현을 위해 개선된 MPP 알고리즘을 제안하고, 매칭에 소요되는 시간을 줄이기 위해 기존의 Nearest Neighbor(NN) 검색을 수정한 동적인 매칭 알고리즘을 제시한다. 특히, 더 나은 정확율과 효율성을 위해, 잎 모양과 잎차례를 스케치하여 질의할 수 있도록 하였다. 실험에서는 제안한 알고리즘과 기존의 알고리즘인 CCD(Centroid Contour Distance), Fourier Descriptor. Curvature Scale Space Descriptor (CSSD), Moment Invariants, MPP와 비교하였다. 1000여개의 식물 잎 이미지를 통한 실험결과는 제안한 방법이 기존의 기법보다 더 좋은 성능임을 보였다.

공간 네트워크 데이터베이스에서 시간제약을 고려한 경로 내 최근접 질의처리 알고리즘 (In-Route Nearest Neighbor Query Processing Algorithm with Time Constraint in Spatial Network Databases)

  • 김용기;김상미;장재우
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제14권2호
    • /
    • pp.196-200
    • /
    • 2008
  • 최근 공간 네트워크 데이타베이스를 위한 질의처리 알고리즘에 관한 연구가 많이 진행되어 왔으나, 경로-기반 질의에 대한 연구는 매우 미흡한 실정이다. 공간 네트워크 데이타베이스에서는 이동객체가 공간 네트워크상에서만 이동하기 때문에 LBS(Location-Based Services) 및 Telematic와 같은 응용에서는 경로-기반 질의가 매우 유용하게 사용된다. 따라서 본 논문에서는 경로-기반 질의의 대표적인 방법인 경로 내 최근접(In-Route Nearest Neighbor, IRNN) 질의처리 알고리즘을 분석하고, 시간 제약을 지닌 새로운 경로 내 최근접 질의처리 알고리즘을 제안한다. 아울러, 성능 분석을 통하여 시간 제약을 지닌 제안하는 질의처리 알고리즘이 기존 경로 내 최근접 질의처리 알고리즘에 비하여 검색 성능이 우수함을 보인다.