현대인들이 계속 쏟아지는 정보로부터 자신에게 필요한 정보만을 제한된 시간 안에 검색하는 일은 쉬운 일이 아니다. 컴퓨터를 이용하여 제한된 시간 내에 원하는 정보를 검색하고자 하는 정보검색 분야에서는 성능을 향상시키기 위한 연구가 활발히 진행되어 오고 있다. 본 논문에서는 정보검색 시스템의 성능을 향상시키고자 퍼지 K-Nearest Neighbor에 의한 정보검색시스템(IRS-FKNN: Information Retrieval System using Fuzzy K-Nearest Neighbor)을 제안한다. 제안하는 시스템은 기존의 시스템과 비교했을 때 검색결과의 신뢰성을 높이게 되어 시스템의 성능을 향상시키게 되었다.
내용 기반 멀티미디어 정보 검색에서 유사성에 기반한 k-최근접 데이타 탐색 질의는 매우 중요한 질의이다 일반적으로 멀티미디어 데이타는 고차원 특정 벡터로 표현되기 때문에 기존의 k-최근접 탐색 알고리즘은 멀티미디어 정보 검색에 효율적이지 못하다. 따라서 이러한 응용을 위해서는 다소 근사적 검색 결과를 가져오더라도 빠른 검색 성능을 제공하는 근사 k-최근접 탐색 알고리즘이 요구된다. 이를 위해 본 논문에서는 고차원 데이타를 위한 새로운 근사 k-최근접 탐색 알고리즘을 제안한다. 아울러, 제안하는 근사 k-최근접 탐색 알고리즘을 기존의 알고리즘과 검색 성능변에서 성능 평가를 수행한다. 성능 평가 결과, 기존 알고리즘의 검색 성능을 크게 개선할 수 있었다.
vp tree는 기준점(vantage point)과의 거리를 기준으로 데이터베이스 내의 자료를 색인하는 자료구조이다. 멀티미디어 자료 검색에서 비슷한 정도는 객체간의 거리를 바탕으로 비교하고, vp tree 색인 구조는 이 과정을 내포하고 있기 때문에 최근 멀티미디어 검색 연구에서 많이 사용되고 있다. 검색 방법에는 query와 가장 가까운 대상을 찾는 Nearest Neighbor Search, 또는 query와 가까운 k등까지를 검색하는 k-Nearest Neighbor Search가 있다. 본 논문에서는 Content-based retrieval에서 최근 자주 사용되는 vp tree에서 효과적인 k-NNS 방법을 제안하고, 기존의 전형적인 k-NNS 방법과의 비교 실험 결과를 보인다.
Case-based reasoning (CBR) method can make estimators understand the estimation process more clearly. Thus, CBR is widely used as a methodology for cost estimation. In CBR, the quality of case retrieval affects the relevance of retrieved cases and hence the overall quality of the reminding capability of CBR system. Thus, it is essential to retrieve relevant past cases for establishing a robust CBR system. Case retrieval needs the following tasks to obtain appropriate case(s); indexing, search, and matching (Aamodt and Plaza 1994). However, the previous CBR researches mostly deal with matching process that has limits such as accuracy and efficiency of case retrieval. In order to address this issue, this research presents a CBR cost model for building projects that has two-step retrieval process: decision tree and nearest neighbor methods. Specifically, the proposed cost model has indexing, search and matching modules. Features in the model are divided into shape-based and scale-based attributes. Based on these, decision tree is established for facilitating the search task and nearest neighbor method was utilized for matching task. In regard to applying nearest neighbor method, attribute weights are assigned using GA optimization and similarity is calculated using the principle of distance measuring. Thereafter, the proposed CBR cost model is developed using 174 cases and validated using 12 test cases.
암호화된 공간데이터베이스와 같은 최근의 여러 응용에서는 질의 기준이 최대근접객체가 되는 객체들을 찾는 역최대 근접질의가 자주 발생한다. 실세계의 검색공간에는 강, 호수 그리고 고속도로 등과 같은 다양한 장애물이 존재하며, 이러한 환경에서 검색성능을 높이기 위해서는 장애물을 고려한 검색거리 측도가 반드시 필요하다. 본 연구에서는 장애물이 존재하는 검색공간에서 역최대근접질의 처리를 최적화하기 위한 검색거리 측도들과 질의처리 알고리즘을 제시한다.
본 논문에서는 의료영상의 특성을 반영하여 픽셀 그래디언트의 방향 값을 특징으로 하는 OCS-LBP (Oriented Center Symmetric Local Binary Patterns) 특징을 개발하고 BoF(Bag-of-Feature)와 Random Forest 분류기를 이용한 영상 검색 방법을 제안한다. 학습영상에서 추출된 특징 값은 code book 으로 군집화 되고, 각 영상들은 code book을 통해 의미 있는 새로운 차원인 BoF특징으로 변환된다. 이렇게 추출된 BoF특징은 Random Forest 분류기에 적용되고 학습된 분류기에 의해 유사한 특성을 갖는 N개의 클래스별로 분류되게 된다. 질의 영상이 입력되면 동일한 OCS-LBP특징이 추출되고 code book을 통해 BoF특징이 추출된다. 전통적인 내용기반 영상검색과는 다르게, 본 논문에서는 질의 영상에서 추출된 BoF특징이 학습된 Random Forest에 적용되어 가장 유사한 K-근접 이웃 (K-nearest neighbor) 클래스들을 선택하고 선택된 클래스들에 포함된 영상들에 대해서만 질의 영상과의 BoF 유사도 측정을 통해 최종 유사한 영상을 검색하게 된다. 실험결과에서 본 논문에서 제안하는 방법은 빠르고 우수한 검색 성능을 보여 주었다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제7권3호
/
pp.459-470
/
2013
The discovery of nearest neighbors, without training in advance, has many applications, such as the formation of mosaic images, image matching, image retrieval and image stitching. When the quantity of data is huge and the number of dimensions is high, the efficient identification of a nearest neighbor (NN) is very important. This study proposes a variation of the KD-tree - the arbitrary KD-tree (KDA) - which is constructed without the need to evaluate variances. Multiple KDAs can be constructed efficiently and possess independent tree structures, when the amount of data is large. Upon testing, using extended synthetic databases and real-world SIFT data, this study concludes that the KDA method increases computational efficiency and produces satisfactory accuracy, when solving NN problems.
본 논문에서는 식물 잎 모양을 기반으로 이미지를 표현하고 검색하는 식물 잎 이미지 검색 시스템을 보인다. 보다 효과적인 잎의 모양 표현을 위하여, MPP(Minimum Perimeter Polygons) 알고리즘을 개선하였고, 처리시간을 줄이기 위하여, NN(Nearest Neighbor) 검색을 개선한 동적 매칭알고리즘을 제안하였다. 본 시스템은 사용자에게 질의 이미지를 업로드하는 인터페이스를 제공하거나 모양 특징에 기반한 질의를 생성하는 도구를 제공하고 유사도에 따른 이미지를 검색한다. 검색의 편의성을 위해, 웹상에서 잎 모양과 잎차례를 스케치하여 손쉽게 질의할 수 있게 하였다. 실험에서는, 한국에 자생하는 식물 이미지 데이터베이스를 구축하였으며, 질의를 통해 검색된 유사한 이미지의 개수를 기반으로 성능을 평가하였다.
본 논문은 모양 특성을 이용한 효과적인 식물 잎 이미지 검색 시스템을 제시한다. 잎 이미지의 더 효과적인 표현을 위해 개선된 MPP 알고리즘을 제안하고, 매칭에 소요되는 시간을 줄이기 위해 기존의 Nearest Neighbor(NN) 검색을 수정한 동적인 매칭 알고리즘을 제시한다. 특히, 더 나은 정확율과 효율성을 위해, 잎 모양과 잎차례를 스케치하여 질의할 수 있도록 하였다. 실험에서는 제안한 알고리즘과 기존의 알고리즘인 CCD(Centroid Contour Distance), Fourier Descriptor. Curvature Scale Space Descriptor (CSSD), Moment Invariants, MPP와 비교하였다. 1000여개의 식물 잎 이미지를 통한 실험결과는 제안한 방법이 기존의 기법보다 더 좋은 성능임을 보였다.
최근 공간 네트워크 데이타베이스를 위한 질의처리 알고리즘에 관한 연구가 많이 진행되어 왔으나, 경로-기반 질의에 대한 연구는 매우 미흡한 실정이다. 공간 네트워크 데이타베이스에서는 이동객체가 공간 네트워크상에서만 이동하기 때문에 LBS(Location-Based Services) 및 Telematic와 같은 응용에서는 경로-기반 질의가 매우 유용하게 사용된다. 따라서 본 논문에서는 경로-기반 질의의 대표적인 방법인 경로 내 최근접(In-Route Nearest Neighbor, IRNN) 질의처리 알고리즘을 분석하고, 시간 제약을 지닌 새로운 경로 내 최근접 질의처리 알고리즘을 제안한다. 아울러, 성능 분석을 통하여 시간 제약을 지닌 제안하는 질의처리 알고리즘이 기존 경로 내 최근접 질의처리 알고리즘에 비하여 검색 성능이 우수함을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.