• Title/Summary/Keyword: Nearest neighbor index

Search Result 80, Processing Time 0.031 seconds

Evaluation of Classification Models of Mild Left Ventricular Diastolic Dysfunction by Tei Index (Tei Index를 이용한 경도의 좌심실 이완 기능 장애 분류 모델 평가)

  • Su-Min Kim;Soo-Young Ye
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.5
    • /
    • pp.761-766
    • /
    • 2023
  • In this paper, TI was measured to classify the presence or absence of mild left ventricular diastolic dysfunction. Of the total 306 data, 206 were used as training data and 100 were used as test data, and the machine learning models used for classification used SVM and KNN. As a result, it was confirmed that SVM showed relatively higher accuracy than KNN and was more useful in diagnosing the presence of left ventricular diastolic dysfunction. In future research, it is expected that classification performance can be further improved by adding various indicators that evaluate not only TI but also cardiac function and securing more data. Furthermore, it is expected to be used as basic data to predict and classify other diseases and solve the problem of insufficient medical manpower compared to the increasing number of tests.

A Performance Comparison of Machine Learning Classification Methods for Soil Creep Susceptibility Assessment (땅밀림 위험지 평가를 위한 기계학습 분류모델 비교)

  • Lee, Jeman;Seo, Jung Il;Lee, Jin-Ho;Im, Sangjun
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.4
    • /
    • pp.610-621
    • /
    • 2021
  • The soil creep, primarily caused by earthquakes and torrential rainfall events, has widely occurred across the country. The Korea Forest Service attempted to quantify the soil creep susceptible areas using a discriminant value table to prevent or mitigate casualties and/or property damages in advance. With the advent of advanced computer technologies, machine learning-based classification models have been employed for managing mountainous disasters, such as landslides and debris flows. This study aims to quantify the soil creep susceptibility using several classifiers, namely the k-Nearest Neighbor (k-NN), Naive Bayes (NB), Random Forest (RF), and Support Vector Machine (SVM) models. To develop the classification models, we downscaled 292 data from 4,618 field survey data. About 70% of the selected data were used for training, with the remaining 30% used for model testing. The developed models have the classification accuracy of 0.727 for k-NN, 0.750 for NB, 0.807 for RF, and 0.750 for SVM against test datasets representing 30% of the total data. Furthermore, we estimated Cohen's Kappa index as 0.534, 0.580, 0.673, and 0.585, with AUC values of 0.872, 0.912, 0.943, and 0.834, respectively. The machine learning-based classifications for soil creep susceptibility were RF, NB, SVM, and k-NN in that order. Our findings indicate that the machine learning classifiers can provide valuable information in establishing and implementing natural disaster management plans in mountainous areas.

kNN Query Processing Algorithm based on the Encrypted Index for Hiding Data Access Patterns (데이터 접근 패턴 은닉을 지원하는 암호화 인덱스 기반 kNN 질의처리 알고리즘)

  • Kim, Hyeong-Il;Kim, Hyeong-Jin;Shin, Youngsung;Chang, Jae-woo
    • Journal of KIISE
    • /
    • v.43 no.12
    • /
    • pp.1437-1457
    • /
    • 2016
  • In outsourced databases, the cloud provides an authorized user with querying services on the outsourced database. However, sensitive data, such as financial or medical records, should be encrypted before being outsourced to the cloud. Meanwhile, k-Nearest Neighbor (kNN) query is the typical query type which is widely used in many fields and the result of the kNN query is closely related to the interest and preference of the user. Therefore, studies on secure kNN query processing algorithms that preserve both the data privacy and the query privacy have been proposed. However, existing algorithms either suffer from high computation cost or leak data access patterns because retrieved index nodes and query results are disclosed. To solve these problems, in this paper we propose a new kNN query processing algorithm on the encrypted database. Our algorithm preserves both data privacy and query privacy. It also hides data access patterns while supporting efficient query processing. To achieve this, we devise an encrypted index search scheme which can perform data filtering without revealing data access patterns. Through the performance analysis, we verify that our proposed algorithm shows better performance than the existing algorithms in terms of query processing times.

A Research on Enhancement of Text Categorization Performance by using Okapi BM25 Word Weight Method (Okapi BM25 단어 가중치법 적용을 통한 문서 범주화의 성능 향상)

  • Lee, Yong-Hun;Lee, Sang-Bum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.12
    • /
    • pp.5089-5096
    • /
    • 2010
  • Text categorization is one of important features in information searching system which classifies documents according to some criteria. The general method of categorization performs the classification of the target documents by eliciting important index words and providing the weight on them. Therefore, the effectiveness of algorithm is so important since performance and correctness of text categorization totally depends on such algorithm. In this paper, an enhanced method for text categorization by improving word weighting technique is introduced. A method called Okapi BM25 has been proved its effectiveness from some information retrieval engines. We applied Okapi BM25 and showed its good performance in the categorization. Various other words weights methods are compared: TF-IDF, TF-ICF and TF-ISF. The target documents used for this experiment is Reuter-21578, and SVM and KNN algorithms are used. Finally, modified Okapi BM25 shows the most excellent performance.

Performance comparison of machine learning classification methods for decision of disc cutter replacement of shield TBM (쉴드 TBM 디스크 커터 교체 유무 판단을 위한 머신러닝 분류기법 성능 비교)

  • Kim, Yunhee;Hong, Jiyeon;Kim, Bumjoo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.5
    • /
    • pp.575-589
    • /
    • 2020
  • In recent years, Shield TBM construction has been continuously increasing in domestic tunnels. The main excavation tool in the shield TBM construction is a disc cutter which naturally wears during the excavation process and significantly degrades the excavation efficiency. Therefore, it is important to know the appropriate time of the disc cutter replacement. In this study, it is proposed a predictive model that can determine yes/no of disc cutter replacement using machine learning algorithm. To do this, the shield TBM machine data which is highly correlated to the disc cutter wears and the disc cutter replacement from the shield TBM field which is already constructed are used as the input data in the model. Also, the algorithms used in the study were the support vector machine, k-nearest neighbor algorithm, and decision tree algorithm are all classification methods used in machine learning. In order to construct an optimal predictive model and to evaluate the performance of the model, the classification performance evaluation index was compared and analyzed.

Vantage Point Metric Index Improvement for Multimedia Databases

  • Chanpisey, Uch;Lee, Sang-Kon Samuel;Lee, In-Hong
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06c
    • /
    • pp.112-114
    • /
    • 2011
  • On multimedia databases, in order to realize the fast access method, indexing methods for the multidimension data space are used. However, since it is a premise to use the Euclid distance as the distance measure, this method lacks in flexibility. On the other hand, there are metric indexing methods which require only to satisfy distance axiom. Since metric indexing methods can also apply for distance measures other than the Euclid distance, these methods have high flexibility. This paper proposes an improved method of VP-tree which is one of the metric indexing methods. VP-tree follows the node which suits the search range from a route node at searching. And distances between a query and all objects linked from the leaf node which finally arrived are computed, and it investigates whether each object is contained in the search range. However, search speed will become slow if the number of distance calculations in a leaf node increases. Therefore, we paid attention to the candidates selection method using the triangular inequality in a leaf node. As the improved methods, we propose a method to use the nearest neighbor object point for the query as the datum point of the triangular inequality. It becomes possible to make the search range smaller and to cut down the number of times of distance calculation by these improved methods. From evaluation experiments using 10,000 image data, it was found that our proposed method could cut 5%~12% of search time of the traditional method.

Fragmentation Analysis of Daejeon City's Green Biotope Using Landscape Index and Visualization Method (경관의 지수화 및 시각화 기법을 활용한 대전광역시 녹지비오톱 파편화 분석)

  • Kim, Jin-Hyo;Ra, Jung-Hwa;Lee, Soon-Ju;Kwon, Oh-Sung;Cho, Hyun-Ju;Lee, Eun-Jae
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.19 no.3
    • /
    • pp.29-44
    • /
    • 2016
  • The purpose of this study is to quantitatively and visually analyze the degree of green biotope fragmentation caused by road construction and other development work using FRAGSTATS and GUIDOS tool. Moreover, linking of the endangered species research, we mapped "Biotope Fragmentation Map" of Daejeon-city. The findings of the study are summarized as follows: First, as the result of FRAGSTATS, landscape indices : number of patch(NP), mean patch size (MPS), edge length(TE), mean nearest neighbor distance(MNN), edge shape(LSI) showed meaningful change from fragmentation. Moreover, the result of GUIDOS analysis, middle core-small core-bridge-branch-edge-islet-perforation showed increase of area percentage without large core. Lastly, analysis result of 'Biotope Fragmentation Map' revealed that changing site of large core's size appeared eighteen-site and designated as the special protection area appeared forty-one site. As the result of the two data, overlapping areas that showed both change of core size and revealed special protection areas revealed four site. For example, five species of endangered species appeared on the NO. 4 site in 'Biotope Fragmentation Map'. The findings of this study as summarized above are considered to play an important role in basic data preventing green biotope fragmentation at the planned level from various development work.

A Comparative Study of Prediction Models for College Student Dropout Risk Using Machine Learning: Focusing on the case of N university (머신러닝을 활용한 대학생 중도탈락 위험군의 예측모델 비교 연구 : N대학 사례를 중심으로)

  • So-Hyun Kim;Sung-Hyoun Cho
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.12 no.2
    • /
    • pp.155-166
    • /
    • 2024
  • Purpose : This study aims to identify key factors for predicting dropout risk at the university level and to provide a foundation for policy development aimed at dropout prevention. This study explores the optimal machine learning algorithm by comparing the performance of various algorithms using data on college students' dropout risks. Methods : We collected data on factors influencing dropout risk and propensity were collected from N University. The collected data were applied to several machine learning algorithms, including random forest, decision tree, artificial neural network, logistic regression, support vector machine (SVM), k-nearest neighbor (k-NN) classification, and Naive Bayes. The performance of these models was compared and evaluated, with a focus on predictive validity and the identification of significant dropout factors through the information gain index of machine learning. Results : The binary logistic regression analysis showed that the year of the program, department, grades, and year of entry had a statistically significant effect on the dropout risk. The performance of each machine learning algorithm showed that random forest performed the best. The results showed that the relative importance of the predictor variables was highest for department, age, grade, and residence, in the order of whether or not they matched the school location. Conclusion : Machine learning-based prediction of dropout risk focuses on the early identification of students at risk. The types and causes of dropout crises vary significantly among students. It is important to identify the types and causes of dropout crises so that appropriate actions and support can be taken to remove risk factors and increase protective factors. The relative importance of the factors affecting dropout risk found in this study will help guide educational prescriptions for preventing college student dropout.

Classification Algorithm-based Prediction Performance of Order Imbalance Information on Short-Term Stock Price (분류 알고리즘 기반 주문 불균형 정보의 단기 주가 예측 성과)

  • Kim, S.W.
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.4
    • /
    • pp.157-177
    • /
    • 2022
  • Investors are trading stocks by keeping a close watch on the order information submitted by domestic and foreign investors in real time through Limit Order Book information, so-called price current provided by securities firms. Will order information released in the Limit Order Book be useful in stock price prediction? This study analyzes whether it is significant as a predictor of future stock price up or down when order imbalances appear as investors' buying and selling orders are concentrated to one side during intra-day trading time. Using classification algorithms, this study improved the prediction accuracy of the order imbalance information on the short-term price up and down trend, that is the closing price up and down of the day. Day trading strategies are proposed using the predicted price trends of the classification algorithms and the trading performances are analyzed through empirical analysis. The 5-minute KOSPI200 Index Futures data were analyzed for 4,564 days from January 19, 2004 to June 30, 2022. The results of the empirical analysis are as follows. First, order imbalance information has a significant impact on the current stock prices. Second, the order imbalance information observed in the early morning has a significant forecasting power on the price trends from the early morning to the market closing time. Third, the Support Vector Machines algorithm showed the highest prediction accuracy on the day's closing price trends using the order imbalance information at 54.1%. Fourth, the order imbalance information measured at an early time of day had higher prediction accuracy than the order imbalance information measured at a later time of day. Fifth, the trading performances of the day trading strategies using the prediction results of the classification algorithms on the price up and down trends were higher than that of the benchmark trading strategy. Sixth, except for the K-Nearest Neighbor algorithm, all investment performances using the classification algorithms showed average higher total profits than that of the benchmark strategy. Seventh, the trading performances using the predictive results of the Logical Regression, Random Forest, Support Vector Machines, and XGBoost algorithms showed higher results than the benchmark strategy in the Sharpe Ratio, which evaluates both profitability and risk. This study has an academic difference from existing studies in that it documented the economic value of the total buy & sell order volume information among the Limit Order Book information. The empirical results of this study are also valuable to the market participants from a trading perspective. In future studies, it is necessary to improve the performance of the trading strategy using more accurate price prediction results by expanding to deep learning models which are actively being studied for predicting stock prices recently.

Image Compression Using DCT Map FSVQ and Single - side Distribution Huffman Tree (DCT 맵 FSVQ와 단방향 분포 허프만 트리를 이용한 영상 압축)

  • Cho, Seong-Hwan
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.10
    • /
    • pp.2615-2628
    • /
    • 1997
  • In this paper, a new codebook design algorithm is proposed. It uses a DCT map based on two-dimensional discrete cosine of transform (2D DCT) and finite state vector quantizer (FSVQ) when the vector quantizer is designed for image transmission. We make the map by dividing input image according to edge quantity, then by the map, the significant features of training image are extracted by using the 2D DCT. A master codebook of FSVQ is generated by partitioning the training set using binary tree based on tree-structure. The state codebook is constructed from the master codebook, and then the index of input image is searched at not master codebook but state codebook. And, because the coding of index is important part for high speed digital transmission, it converts fixed length codes to variable length codes in terms of entropy coding rule. The huffman coding assigns transmission codes to codes of codebook. This paper proposes single-side growing huffman tree to speed up huffman code generation process of huffman tree. Compared with the pairwise nearest neighbor (PNN) and classified VQ (CVQ) algorithm, about Einstein and Bridge image, the new algorithm shows better picture quality with 2.04 dB and 2.48 dB differences as to PNN, 1.75 dB and 0.99 dB differences as to CVQ respectively.

  • PDF