• 제목/요약/키워드: Nearest neighbor algorithm

검색결과 338건 처리시간 0.023초

강우사상의 지속기간별 분포 특성을 고려한 일강우 모의 기법 개발 (Development of methodology for daily rainfall simulation considering distribution of rainfall events in each duration)

  • 정재원;김수전;김형수
    • 한국수자원학회논문집
    • /
    • 제52권2호
    • /
    • pp.141-148
    • /
    • 2019
  • 기존의 Markov Chain 모형으로 일강우량 모의시에 강우의 발생여부를 모의하고 강우일의 강우량은 Monte Carlo 시뮬레이션을 통해 일강우 분포 특성에 맞는 분포형에서 랜덤으로 강우량을 추정하는 것이 일반적이다. 이때 강우 지속기간에 따른 강도 및 강우의 시간별 분포 등의 강우 사상의 특성을 반영할 수 없다는 한계가 있다. 본 연구에서는 이를 개선하기 위해 강우 사상을 1일 지속강우, 2일 지속강우, 3일 지속강우, 4일이상 지속강우로 구분하여 강우의 지속기간에 따라 강우량을 추정하였다. 즉 강우 사상의 강우 지속일별로 총강우량의 분포형을 비매개변수 추정이 가능한 핵밀도추정(Kernel Density Estimation, KDE)를 적용하여 각각 추정하였고, 강우가 지속될 경우에 지속일별로 해당하는 분포형에서 강우량을 구하였다. 각 강우사상에 대해 추정된 총 강우량은 k-최근접 이웃 알고리즘(k-Nearest Neighbor algorithm, KNN)을 통해 관측 강우자료에서 가장 유사한 강우량을 가지는 강우사상의 강우량 일분포 형태에 따라 각 일강우량으로 분배하였다. 본 연구는 기존의 강우량 추정 방법의 한계점을 개선하고자 하였으며, 연구 결과는 미래 강우에 대한 예측에도 활용될 수 있으며 수자원 설계에 있어서 기초자료로 활용될 수 있을 것으로 기대된다.

회전수가 변하는 기기의 고장진단에 있어서 특성 기반 분류와 합성곱 기반 알고리즘의 예측 정확도 비교 (Comparison of Prediction Accuracy Between Classification and Convolution Algorithm in Fault Diagnosis of Rotatory Machines at Varying Speed)

  • 문기영;김형진;황세윤;이장현
    • 한국항해항만학회지
    • /
    • 제46권3호
    • /
    • pp.280-288
    • /
    • 2022
  • 본 연구는 정상 가동 중에도 회전수가 변하는 기기의 이상 및 고장 진단 방안을 다루고 있다. 회전수가 변함에 따라 비정상적 시계열 특성을 내포한 센서 데이터에 기계학습을 적용할 수 있는 절차를 제시하고자 하였다. 기계학습으로는 k-Nearest Neighbor(k-NN), Support Vector Machine(SVM), Random Forest을 사용하여 이상 및 고장 진단을 수행하였다. 또한 진단 정확성을 비교할 목적으로 이상 감지에 오토인코더, 고장진단에는 합성곱 기반의 Conv1D도 추가로 이용하였다. 비정상적 시계열로부터 통계 및 주파수 속성으로 구성된 시계열 특징 벡터를 추출하고, 추출된 특징 벡터에 정규화 및 차원 축소 기법을 적용하였다. 특징 벡터의 선택과 정규화, 차원 축소 여부에 따라 달라지는 기계학습의 진단 정확도를 비교하였다. 또한, 적용된 학습 알고리즘 별로 초매개변수 최적화 과정과 적층 구조를 설명하였다. 최종적으로 기존의 심층학습과 비교하여, 기계학습도 가변 회전기기의 고장을 정확하게 진단할 수 있는 절차를 제시하였다.

Fast k-NN based Malware Analysis in a Massive Malware Environment

  • Hwang, Jun-ho;Kwak, Jin;Lee, Tae-jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권12호
    • /
    • pp.6145-6158
    • /
    • 2019
  • It is a challenge for the current security industry to respond to a large number of malicious codes distributed indiscriminately as well as intelligent APT attacks. As a result, studies using machine learning algorithms are being conducted as proactive prevention rather than post processing. The k-NN algorithm is widely used because it is intuitive and suitable for handling malicious code as unstructured data. In addition, in the malicious code analysis domain, the k-NN algorithm is easy to classify malicious codes based on previously analyzed malicious codes. For example, it is possible to classify malicious code families or analyze malicious code variants through similarity analysis with existing malicious codes. However, the main disadvantage of the k-NN algorithm is that the search time increases as the learning data increases. We propose a fast k-NN algorithm which improves the computation speed problem while taking the value of the k-NN algorithm. In the test environment, the k-NN algorithm was able to perform with only the comparison of the average of similarity of 19.71 times for 6.25 million malicious codes. Considering the way the algorithm works, Fast k-NN algorithm can also be used to search all data that can be vectorized as well as malware and SSDEEP. In the future, it is expected that if the k-NN approach is needed, and the central node can be effectively selected for clustering of large amount of data in various environments, it will be possible to design a sophisticated machine learning based system.

Courses Recommendation Algorithm Based On Performance Prediction In E-Learning

  • Koffi, Dagou Dangui Augustin Sylvain Legrand;Ouattara, Nouho;Mambe, Digrais Moise;Oumtanaga, Souleymane;ADJE, Assohoun
    • International Journal of Computer Science & Network Security
    • /
    • 제21권2호
    • /
    • pp.148-157
    • /
    • 2021
  • The effectiveness of recommendation systems depends on the performance of the algorithms with which these systems are designed. The quality of the algorithms themselves depends on the quality of the strategies with which they were designed. These strategies differ from author to author. Thus, designing a good recommendation system means implementing the good strategies. It's in this context that several research works have been proposed on various strategies applied to algorithms to meet the needs of recommendations. Researchers are trying indefinitely to address this objective of seeking the qualities of recommendation algorithms. In this paper, we propose a new algorithm for recommending learning items. Learner performance predictions and collaborative recommendation methods are used as strategies for this algorithm. The proposed performance prediction model is based on convolutional neural networks (CNN). The results of the performance predictions are used by the proposed recommendation algorithm. The results of the predictions obtained show the efficiency of Deep Learning compared to the k-nearest neighbor (k-NN) algorithm. The proposed recommendation algorithm improves the recommendations of the learners' learning items. This algorithm also has the particularity of dissuading learning items in the learner's profile that are deemed inadequate for his or her training.

무인 잠수정 3자유도 운동 실험에 대한 무향 칼만 필터 기반 SLAM기법 적용 (Experiments of Unmanned Underwater Vehicle's 3 Degrees of Freedom Motion Applied the SLAM based on the Unscented Kalman Filter)

  • 황아롬;성우제;전봉환;이판묵
    • 한국해양공학회지
    • /
    • 제23권2호
    • /
    • pp.58-68
    • /
    • 2009
  • The increased use of unmanned underwater vehicles (UUV) has led to the development of alternative navigational methods that do not employ acoustic beacons and dead reckoning sensors. This paper describes a simultaneous localization and mapping (SLAM) scheme that uses range sonars mounted on a small UUV. A SLAM scheme is an alternative navigation method for measuring the environment through which the vehicle is passing and providing the relative position of the UUV. A technique for a SLAM algorithm that uses several ranging sonars is presented. This technique utilizes an unscented Kalman filter to estimate the locations of the UUV and surrounding objects. In order to work efficiently, the nearest neighbor standard filter is introduced as the data association algorithm in the SLAM for associating the stored targets returned by the sonar at each time step. The proposed SLAM algorithm was tested by experiments under various three degrees of freedom motion conditions. The results of these experiments showed that the proposed SLAM algorithm was capable of estimating the position of the UUV and the surrounding objects and demonstrated that the algorithm will perform well in various environments.

PHR 기반 개인 맞춤형 건강정보 탐사 알고리즘 설계 (Design of knowledge search algorithm for PHR based personalized health information system)

  • 신문선
    • 디지털융복합연구
    • /
    • 제15권4호
    • /
    • pp.191-198
    • /
    • 2017
  • PHR(Personal Health Record)기반 헬스케어 서비스 플랫폼 지능화를 위해서는 사용자 맞춤형 건강정보 제공서비스가 필요하다. 본 논문에서는 개인 맞춤형 건강정보 추천을 위해서 온톨로지 기반 건강 정보 모델을 제안하였다. 또한 기계학습과 데이터마이닝 기법을 적용한 유사 건강정보 탐사 알고리즘을 설계하였다. 기존의 데이터마이닝 기법중 연관규칙 알고리즘을 확장하여 속성을 기반으로 연관규칙 탐사를 수행하여 지식탐사의 연관성을 높이고 효율적인 탐사시간을 제공할 수 있도록 하였다. 머신러닝의 한 기법인 K근접이웃 알고리즘을 적용하여 사용자 프로파일별 그룹화를 수행하고 유사패턴의 사용자 프로파일을 검색할 수 있도록 하였다. 이는 사용자의 질환과 건강상태에 따른 맞춤형 건강정보 탐사 수행의 효율성을 높인다. 제안된 알고리즘은 개인 맞춤형 헬스케어 서비스 플랫폼에서 추론과정에 적용되어 사용자에게 개인맞춤형건강정보를 추천하는 것을 가능하게 한다. 이는 고령화사회에서 스마트한 자가 건강관리에 활용될 수 있다.

문자열 검출을 위한 슬라브 영역 추정 (Slab Region Localization for Text Extraction using SIFT Features)

  • 최종현;최성후;윤종필;구근휘;김상우
    • 전기학회논문지
    • /
    • 제58권5호
    • /
    • pp.1025-1034
    • /
    • 2009
  • In steel making production line, steel slabs are given a unique identification number. This identification number, Slab management number(SMN), gives information about the use of the slab. Identification of SMN has been done by humans for several years, but this is expensive and not accurate and it has been a heavy burden on the workers. Consequently, to improve efficiency, automatic recognition system is desirable. Generally, a recognition system consists of text localization, text extraction, character segmentation, and character recognition. For exact SMN identification, all the stage of the recognition system must be successful. In particular, the text localization is great important stage and difficult to process. However, because of many text-like patterns in a complex background and high fuzziness between the slab and background, directly extracting text region is difficult to process. If the slab region including SMN can be detected precisely, text localization algorithm will be able to be developed on the more simple method and the processing time of the overall recognition system will be reduced. This paper describes about the slab region localization using SIFT(Scale Invariant Feature Transform) features in the image. First, SIFT algorithm is applied the captured background and slab image, then features of two images are matched by Nearest Neighbor(NN) algorithm. However, correct matching rate can be low when two images are matched. Thus, to remove incorrect match between the features of two images, geometric locations of the matched two feature points are used. Finally, search rectangle method is performed in correct matching features, and then the top boundary and side boundaries of the slab region are determined. For this processes, we can reduce search region for extraction of SMN from the slab image. Most cases, to extract text region, search region is heuristically fixed [1][2]. However, the proposed algorithm is more analytic than other algorithms, because the search region is not fixed and the slab region is searched in the whole image. Experimental results show that the proposed algorithm has a good performance.

센서네트워크를 위한 K-NN 기반의 위치 추정 시스템 (Location Positioning System Based on K-NN for Sensor Networks)

  • 김병국;홍원길
    • 한국멀티미디어학회논문지
    • /
    • 제15권9호
    • /
    • pp.1112-1125
    • /
    • 2012
  • LBS(Location Based Service)를 위한 대표적인 수단으로 GPS가 많이 사용된다. 그러나 GPS는 야외 및 개방된 공간에서만 이용이 가능하다. 또한, 저전력을 기반으로 한 무선 센서네트워크에서의 활용은 비효율적이다. 본 논문에서는 실내 환경에서 위치 측위를 위하여 기존 시스템들과는 다른 접근 방법을 이용하여 위치를 측위 한다. 무선 센서네트워크에서 대표적으로 사용하는 IEEE 802.15.4를 기반으로 K-NN (K-Nearest Neighbor) 알고리즘에 중간값(Intermediate Value)을 적용하여, 더 세밀하게 위치를 측위 할 수 있는 시스템을 제안한다. K-NN의 경우 측정된 위치의 정교성은 셈플링의 개수에 비례한다. 그러나 센서네트워크에서 셈플링 개수를 무수히 늘리는 것은 비효율적이다. 본 논문에서는 셈플링값에 중간값을 적용하여 셈플링을 줄이는 알고리즘을 제안한다. 그리고 제안한 알고리즘을 구현하고 이를 실험하여 기존의 K-NN 기반의 위치 추정보다 약 두 배의 정밀도를 얻을 수 있음을 증명한다.

일반적인 GPU 트리 탐색과의 비교실험을 통한 GPU 기반 병렬 Shifted Sort 알고리즘 분석 (Analysis of GPU-based Parallel Shifted Sort Algorithm by comparing with General GPU-based Tree Traversal)

  • 김희수;박태정
    • 디지털콘텐츠학회 논문지
    • /
    • 제18권6호
    • /
    • pp.1151-1156
    • /
    • 2017
  • 일반적으로 GPU 기반 트리 탐색을 수행할 경우 병렬 처리 속도가 생각보다 크게 향상되지 않는 경우가 대부분이다. 본 논문에서는 이러한 원인을 분석하고 그 분석 결과로 GPU 병렬 처리 하드웨어 아키텍처 내 최소 물리적 스레드 실행 단위인 warp 내에서 분기문(if문)으로 인한 warp divergence가 일어나기 때문임을 제시한다. 또한 이러한 warp divergence를 최소화할 수 있는 병렬 shifted sort 알고리즘과의 비교를 통해 shifted sort 알고리즘이 일반적인 GPU 내 트리 탐색에 비해 우수한 성능을 보이는 구조임을 제시하였다. 분석 결과 GPU 기반 kd-tree 탐색에 비해 warp divergence가 발생하지 않은 shifted sort 탐색은 3차원 공간에서 데이터나 쿼리의 수가 $2^{23}$개 일 때 16배 이상의 빠른 처리 속도를 보였으며 이 성능 차이는 데이터나 쿼리의 개수가 증가함에 따라 더 커지는 경향을 보였다.

FAFS: A Fuzzy Association Feature Selection Method for Network Malicious Traffic Detection

  • Feng, Yongxin;Kang, Yingyun;Zhang, Hao;Zhang, Wenbo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권1호
    • /
    • pp.240-259
    • /
    • 2020
  • Analyzing network traffic is the basis of dealing with network security issues. Most of the network security systems depend on the feature selection of network traffic data and the detection ability of malicious traffic in network can be improved by the correct method of feature selection. An FAFS method, which is short for Fuzzy Association Feature Selection method, is proposed in this paper for network malicious traffic detection. Association rules, which can reflect the relationship among different characteristic attributes of network traffic data, are mined by association analysis. The membership value of association rules are obtained by the calculation of fuzzy reasoning. The data features with the highest correlation intensity in network data sets are calculated by comparing the membership values in association rules. The dimension of data features are reduced and the detection ability of malicious traffic detection algorithm in network is improved by FAFS method. To verify the effect of malicious traffic feature selection by FAFS method, FAFS method is used to select data features of different dataset in this paper. Then, K-Nearest Neighbor algorithm, C4.5 Decision Tree algorithm and Naïve Bayes algorithm are used to test on the dataset above. Moreover, FAFS method is also compared with classical feature selection methods. The analysis of experimental results show that the precision and recall rate of malicious traffic detection in the network can be significantly improved by FAFS method, which provides a valuable reference for the establishment of network security system.