Journal of the Korean Operations Research and Management Science Society
/
v.35
no.2
/
pp.71-88
/
2010
A density-based outlier detection such as an LOF (Local Outlier Factor) tries to find an outlying observation by using density of its surrounding space. In spite of several advantages of a density-based outlier detection method, the computational complexity of outlier detection has been one of major barriers in its application. In this paper, we present an LOF algorithm that can reduce computation time of a density based outlier detection algorithm. A kd-tree indexing and approximated k-nearest neighbor search algorithm (ANN) are adopted in the proposed method. A set of experiments was conducted to examine performance of the proposed algorithm. The results show that the proposed method can effectively detect local outliers in reduced computation time.
Proceedings of the Korean Information Science Society Conference
/
1998.10b
/
pp.191-193
/
1998
지금까지 제시된 최근접 질의 알고리즘은다소간의 cklms 있으나 기본적으로 질의 점과 MBR간의 최소거리에 기반한 분기와 한정 기법을 이용하고 있다. 그러나 차원이 증가함에 따라 질의 구와 겹치는 노드가 급속히 증가하기 때문에 최근접 질의 알고리즘의 성능은 매우 비효율적이다. 이러한 문제를 해결하기 위해서 MBR 간의 중첩을 줄이고 MBR 내에 가급적 많은 점을 포함할 수 있는 다양한 다차원 색인 구조가 제시도 되었다. 그러나 우리의 실험에 의하면 이러한 방법이 근본적인 해결책이 되지 못함을 알 수 있다. 고차원 백터 공간 모델이 가지는 문제로써 임의의 질의 점으로부터 모든 데이터 점들까지의 거리가 차원이 올라감에 따라 유사해지는 현상 때문에 비효율적인 성능이 나옴을 본 논문에서 지적한다.
Feature-based similarity retrieval become an important research issue in image database systems. The features of image data are useful to discrimination of images. In this paper, we propose the highspeed k-Nearest Neighbor search algorithm based on Self-Organizing Maps. Self-Organizing Maps (SOM) provides a mapping from high dimensional feature vectors onto a two-dimensional space. The mapping preserves the topology of the feature vectors. The map is called topological feature map. A topological feature map preserves the mutual relations (similarity) in feature spaces of input data. and clusters mutually similar feature vectors in a neighboring nodes. Each node of the topological feature map holds a node vector and similar images that is closest to each node vector. In topological feature map, there are empty nodes in which no image is classified. We experiment on the performance of our algorithm using color feature vectors extracted from images. Promising results have been obtained in experiments.
Journal of Korean Society of Industrial and Systems Engineering
/
v.35
no.4
/
pp.235-243
/
2012
The Voronoi diagram of spheres and power diagram have been known as powerful tools to analyze spatial characteristics of weighted points, and these structures have variety range of applications including molecular spatial structure analysis, location based optimization, architectural design, etc. Due to the fact that both diagrams are based on different distance metrics, one has better usability than another depending on application problems. In this paper, we compare these diagrams in various situations from the user's viewpoint, and show the Voronoi diagram of spheres is more effective in the problems based on the Euclidean distance metric such as nearest neighbor search, path bottleneck locating, and internal void finding.
Kim, Byung-Gon;Han, Joung-Woon;Lee, Jaeho;Haechull Lim
Proceedings of the IEEK Conference
/
2000.07b
/
pp.869-872
/
2000
Although many content-based image retrieval systems using shape feature have tried to cover rotation-, position- and scale-invariance between images, there have been problems to cover three kinds of variance at the same time. In this paper, we introduce new approach to extract shape feature from image using MBR(Minimum Bounding Rectangle). The proposed method scans image for extracting MBR information and, based on MBR information, compute contour information that consists of 16 points. The extracted information is converted to specific values by normalization and rotation. The proposed method can cover three kinds of invariance at the same time. We implemented our method and carried out experiments. We constructed R*_tree indexing structure, perform k-nearest neighbor search from query image, and demonstrate the capability and usefulness of our method.
Proceedings of the Korean Information Science Society Conference
/
1999.10a
/
pp.3-5
/
1999
최근접 검색(nearest neighbor search)을 위해서 대부분의 기존 기법들은 데이터를 특정한 공간 인덱스 구조를 이용하여 인덱싱하고 이 인덱스를 이용하여 질의를 수행하는 방법을 사용하였다. 본 연구에서는 이러한 데이터 자체를 인덱싱하는 방법과는 달리 미리 최근접 질의의 결과가 되는 Vorononi 다이어그램을 생성해두고, 이를 통하여 최근접 검색을 수행하는 VGrid(Voronoi diagram-Grid) 기법을 제안한다. 이 방법은 미리 모든 데이터에 대한 Voronoi 다이어그램을 계산하고 그 결과를 격자(grid)를 이용하여 인덱싱한 다음 최근접 검색 질의가 주어지면 이 격자 인덱스를 이용하여 빠르게 결과를 찾아낸다. 이 방법을 이용하면 처음 인덱스를 생성할 때는 많은 계산 시간이 소모되지만, 일단 인덱스가 구성되고 나면 최근접 검색 질의 처리 시 디스크 접근 회수가 줄기 때문에 기존의 기법에 비해 빠르게 최근접 검색 질의를 수행할 수 있다.
Proceedings of the Korea Water Resources Association Conference
/
2023.05a
/
pp.352-352
/
2023
본 연구에서는 제주도권역 강우관측소의 고도별 공간분포의 적정성을 평가하기 위한 방안으로 고도별 강우관측소의 최근린지수(Nearest Neighbor Index, NNI)를 산정하고 현재 강우관측소 공간분포의 적정성을 평가하였다. 또한, 제주도권역을 고도에 따라 등면적으로 구분하고, 고도마다 상이한 지형조건을 고려하기 위해 등면적으로 구분된 각 강우관측소의 최대 NNI를 최적화 기법의 하나인 화음탐색법(Harmony Search, HS)을 이용하여 산정하였다. 이와같이 현재 강우관측소설치위치를 기준으로 산정한 NNI와 HS를 이용하여 산정한 최대 NNI의 차이를 바탕으로 지형적인 특성을 고려한 제주도권역 강우관측소 분포를 비교·검토하였다. 그 결과 고도가 높아짐에 따라 강우관측소의 개수가 낮은 고도에 비해 상대적으로 적어 관측소 밀도가 작은 것으로 산정되었다. 향후 제주도권역 강우관측소의 지형적인 특성을 반영한다면 보다 효율적인 제주도권역 강우량관측이 가능할 것으로 판단된다.
International Journal of Computer Science & Network Security
/
v.24
no.2
/
pp.196-202
/
2024
Currently, the second most devastating form of cancer in people, particularly in women, is Breast Cancer (BC). In the healthcare industry, Machine Learning (ML) is commonly employed in fatal disease prediction. Due to breast cancer's favorable prognosis at an early stage, a model is created to utilize the Dataset on Wisconsin Diagnostic Breast Cancer (WDBC). Conversely, this model's overarching axiom is to compare the effectiveness of five well-known ML classifiers, including Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), K-Nearest Neighbor (KNN), and Naive Bayes (NB) with the conventional method. To counterbalance the effect with conventional methods, the overarching tactic we utilized was hyperparameter tuning utilizing the grid search method, which improved accuracy, secondary precision, third recall, and finally the F1 score. In this study hyperparameter tuning model, the rate of accuracy increased from 94.15% to 98.83% whereas the accuracy of the conventional method increased from 93.56% to 97.08%. According to this investigation, KNN outperformed all other classifiers in terms of accuracy, achieving a score of 98.83%. In conclusion, our study shows that KNN works well with the hyper-tuning method. These analyses show that this study prediction approach is useful in prognosticating women with breast cancer with a viable performance and more accurate findings when compared to the conventional approach.
Scene classification and concept-based procedures have been the great interest for image categorization applications for large database. Knowing the category to which scene belongs, we can filter out uninterested images when we try to search a specific scene category such as beach, mountain, forest and field from database. In this paper, we propose an adaptive segmentation method for real-world natural scene classification based on a semantic modeling. Semantic modeling stands for the classification of sub-regions into semantic concepts such as grass, water and sky. Our adaptive segmentation method utilizes the edge detection to split an image into sub-regions. Frequency of occurrences of these semantic concepts represents the information of the image and classifies it to the scene categories. K-Nearest Neighbor (k-NN) algorithm is also applied as a classifier. The empirical results demonstrate that the proposed adaptive segmentation method outperforms the Vogel and Schiele's method in terms of accuracy.
Proceedings of the Korean Information Science Society Conference
/
2011.06c
/
pp.112-114
/
2011
On multimedia databases, in order to realize the fast access method, indexing methods for the multidimension data space are used. However, since it is a premise to use the Euclid distance as the distance measure, this method lacks in flexibility. On the other hand, there are metric indexing methods which require only to satisfy distance axiom. Since metric indexing methods can also apply for distance measures other than the Euclid distance, these methods have high flexibility. This paper proposes an improved method of VP-tree which is one of the metric indexing methods. VP-tree follows the node which suits the search range from a route node at searching. And distances between a query and all objects linked from the leaf node which finally arrived are computed, and it investigates whether each object is contained in the search range. However, search speed will become slow if the number of distance calculations in a leaf node increases. Therefore, we paid attention to the candidates selection method using the triangular inequality in a leaf node. As the improved methods, we propose a method to use the nearest neighbor object point for the query as the datum point of the triangular inequality. It becomes possible to make the search range smaller and to cut down the number of times of distance calculation by these improved methods. From evaluation experiments using 10,000 image data, it was found that our proposed method could cut 5%~12% of search time of the traditional method.
이메일무단수집거부
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.