• Title/Summary/Keyword: Nearest Neighbor Interpolation

Search Result 31, Processing Time 0.034 seconds

Comparison of Error and Enhancement: Effect of Image Interpolation

  • Siddiqi, Muhammad Hameed;Fatima, Iram;Lee, Young-Koo;Lee, Sung-Young
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06c
    • /
    • pp.188-190
    • /
    • 2011
  • Image interpolation is a technique that pervades many an application. Interpolation is almost never the goal in itself, yet it affects both the desired results and the ways to obtain them. In this paper, we proposed a technique that is capable to find out the error when the common two methods (bilinear and nearest neighbor interpolation) are applied on an image for rotation. The proposed technique also includes the comparison results of bilinear interpolation and nearest neighbor interpolation. Among them nearest neighbor interpolation gives us a better result regarding to the enhancement and due to least error. The error is found by using Mean Square Error (MSE).

A study on the Interpolation method of Digital scan image (디지털 스캔 이미지의 보간방법에 관한 연구)

  • 이성형;조가람;구철희
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.16 no.3
    • /
    • pp.81-95
    • /
    • 1998
  • If a image doesn't include sufficient data of output size and resolution, we will scan again the image. Interpolation generates a new pixel by methematical average of processing. In the interpolation method, there are nearest neighbor interpolation, bilinear interpolation and bicubic interpolation etc. This study was carried out for the purpose of researching compatible method to digital scan image caused by only different interpolation methods. Nearest neighbor interpolation show superior effect in the drawing image. Bilinear interpolation show reduction in detail and contrast. Bicubic interpolation show superior effect in the digital photo image USM(Unsharp Mask) application after extension by interpolation show better than extension by interpolation after USM(unsharp mask) application.

  • PDF

The Estimation of Hopper Dredging Capacity by Combination of DGPS and Echo Sounder (DGPS/Echo Sounder 조합에 의한 호퍼준설량 산정)

  • Kim Jin Soo;Seo Dong Ju;Lee Jong Chool
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.1
    • /
    • pp.39-47
    • /
    • 2005
  • In this study, three-dimensional information of submarine topography acquired by assembling DGPS method and echo sounder which mainly used in the marine survey. Moreover, the hopper dredging capacity in harbor public affair has been calculated by utilizing kriging, radial basis function and nearest neighbor interpolation. Also, utilization of DGPS/Echo sounder method in calculation of the dredging capacity have been confirmed by comparing and analyzing the hopper dredging capacity and the actual one as per each interpolation. According to this comparison result, in case of applying kriging interpolation, some 1.89% of error rate has been shown as difference of the contents is 15,364 ㎥ and in case of applying radial basis function interpolation and nearest neighbor interpolation, 3.9% and 4.4% of error rates have respectively shown. In case the study for application of the proper interpolation as per characteristics of submarine topography, is preceded in calculation of the dredging capacity relevant to harbor public affairs, it is expected that more speedy and correct calculation for the dredging capacity can be made.

Application of Curve Interpolation Algorithm in CAD/CAM to Remove the Blurring of Magnified Image

  • Lee Yong-Joong
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.115-124
    • /
    • 2005
  • This paper analyzes the problems that occurred in the magnification process for a fine input image and investigates a method to improve the problems. This paper applies a curve interpolation algorithm in CAD/CAM for the same test images with the existing image algorithm in order to improve the problems. As a result. the nearest neighbor interpolation. which is the most frequently applied algorithm for the existing image interpolation algorithm. shows that the identification of a magnified image is not possible. Therefore. this study examines an interpolation of gray-level data by applying a low-pass spatial filter and verifies that a bilinear interpolation presents a lack of property that accentuates the boundary of the image where the image is largely changed. The periodic B-spline interpolation algorithm used for curve interpolation in CAD/CAM can remove the blurring but shows a problem of obscuration, and the Ferguson's curve interpolation algorithm shows a more sharpened image than that of the periodic B-spline algorithm. For the future study, hereafter. this study will develop an interpolation algorithm that has an excel lent improvement for the boundary of the image and continuous and flexible property by using the NURBS. Ferguson's complex surface. and Bezier surface used in CAD/CAM engineering based on. the results of this study.

  • PDF

A Study on the Interpolation Algorithm to Improve the Blurring of Magnified Image (확대 영상의 몽롱화 현상을 제거하기 위한 보간 알고리즘 연구)

  • Lee, Jun-Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.4
    • /
    • pp.562-569
    • /
    • 2010
  • This paper analyzes the problems that occurred in the magnification process for a fine input image and investigates a method to improve the blurring of magnified image. This paper applies a curve interpolation algorithm in CAD/CAM for the same test images with the existing image algorithm in order to improve the blurring of magnified image. As a result, the nearest neighbor interpolation, which is the most frequently applied algorithm for the existing image interpolation algorithm, shows that the identification of a magnified image is not possible. Therefore, this study examines an interpolation of gray-level data by applying a low-pass spatial filter and verifies that a bilinear interpolation presents a lack of property that accentuates the boundary of the image where the image is largely changed. The periodic B-spline interpolation algorithm used for curve interpolation in CAD/CAM can remove the blurring but shows a problem of obscuration, and the Ferguson' curve interpolation algorithm shows a more sharpened image than that of the periodic B-spline algorithm. For the future study, hereafter, this study will develop an interpolation algorithm that has an excellent improvement for the boundary of the image and continuous and flexible property by using the NURBS, Ferguson' complex surface, and Bezier surface used in CAD/CAM engineering based on the results of this study.

Interpolation of Color Image Scales (칼라 이미지 스케일의 보간)

  • Kim, Sung-Hwan;Jeong, Sung-Hwan;Lee, Joon-Whoan
    • Science of Emotion and Sensibility
    • /
    • v.10 no.3
    • /
    • pp.289-297
    • /
    • 2007
  • Color image scale captures the knowledge of colorists and represents both adjectives and colors in the same adjective image scales in order to select color(s) corresponding to an adjective. Due to the difficulty of psychological experiment and statistical analysis, in general, only a limited number of colors are located in the color image scales. This can make color selection process hard especially to non-expert. In this paper, we propose an interpolation of color image scale based on the fuzzy K-nearest neighbor method, which provides continuous colors according to the coordinates of the image scales. The experimental results show that the interpolated image scales can be practically useful for color selection process.

  • PDF

Adopting and Implementation of Decision Tree Classification Method for Image Interpolation (이미지 보간을 위한 의사결정나무 분류 기법의 적용 및 구현)

  • Kim, Donghyung
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.1
    • /
    • pp.55-65
    • /
    • 2020
  • With the development of display hardware, image interpolation techniques have been used in various fields such as image zooming and medical imaging. Traditional image interpolation methods, such as bi-linear interpolation, bi-cubic interpolation and edge direction-based interpolation, perform interpolation in the spatial domain. Recently, interpolation techniques in the discrete cosine transform or wavelet domain are also proposed. Using these various existing interpolation methods and machine learning, we propose decision tree classification-based image interpolation methods. In other words, this paper is about the method of adaptively applying various existing interpolation methods, not the interpolation method itself. To obtain the decision model, we used Weka's J48 library with the C4.5 decision tree algorithm. The proposed method first constructs attribute set and select classes that means interpolation methods for classification model. And after training, interpolation is performed using different interpolation methods according to attributes characteristics. Simulation results show that the proposed method yields reasonable performance.

Super Resolution Technique Through Improved Neighbor Embedding (개선된 네이버 임베딩에 의한 초해상도 기법)

  • Eum, Kyoung-Bae
    • Journal of Digital Contents Society
    • /
    • v.15 no.6
    • /
    • pp.737-743
    • /
    • 2014
  • For single image super resolution (SR), interpolation based and example based algorithms are extensively used. The interpolation algorithms have the strength of theoretical simplicity. However, those algorithms are tending to produce high resolution images with jagged edges, because they are not able to use more priori information. Example based algorithms have been studied in the past few years. For example based SR, the nearest neighbor based algorithms are extensively considered. Among them, neighbor embedding (NE) has been inspired by manifold learning method, particularly locally linear embedding. However, the sizes of local training sets are always too small. So, NE algorithm is weak in the performance of the visuality and quantitative measure by the poor generalization of nearest neighbor estimation. An improved NE algorithm with Support Vector Regression (SVR) was proposed to solve this problem. Given a low resolution image, the pixel values in its high resolution version are estimated by the improved NE. Comparing with bicubic and NE, the improvements of 1.25 dB and 2.33 dB are achieved in PSNR. Experimental results show that proposed method is quantitatively and visually more effective than prior works using bicubic interpolation and NE.

Interpolation Algorithm Comparison for Contour of Magnified Image (확대 영상의 윤각선 보간 알고리즘 비교)

  • 이용중;김기대;조순조
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.381-386
    • /
    • 2001
  • When a input image is extensively magnified on the computer system, it is almost impossible to replicate the original shape because of mismatched coordinates system. In order to resolve the problem, the shape of the magnified image has been reconfigured using the bilinear interpolation method, low pass special filtering interpolation method and B-spline interpolation method, Ferguson curve interpolation method based on the CAD/CAM curve interpolation algorithm. The computer simulation main result was that. Nearest neighbor interpolation method is simple in making the interpolation program but it is not capable to distinguish the original shape. Bilinear interpolation method has the merit to make the magnified shape smooth and soft but calculation time is longer than the other method. Low pass spatial filtering method and B-spline interpolation method has an effect to immerge the intense of the magnified shape but it is also difficult to distinguish the original shape. Ferguson curve interpolation method has sharping shape than B-spline interpolation method.

  • PDF

Non-Local Mean based Post Processing Scheme for Performance Enhancement of Image Interpolation Method (이미지 보간기법의 성능 개선을 위한 비국부평균 기반의 후처리 기법)

  • Kim, Donghyung
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.3
    • /
    • pp.49-58
    • /
    • 2020
  • Image interpolation, a technology that converts low resolution images into high resolution images, has been widely used in various image processing fields such as CCTV, web-cam, and medical imaging. This technique is based on the fact that the statistical distributions of the white Gaussian noise and the difference between the interpolated image and the original image is similar to each other. The proposed algorithm is composed of three steps. In first, the interpolated image is derived by random image interpolation. In second, we derive weighting functions that are used to apply non-local mean filtering. In the final step, the prediction error is corrected by performing non-local mean filtering by applying the selected weighting function. It can be considered as a post-processing algorithm to further reduce the prediction error after applying an arbitrary image interpolation algorithm. Simulation results show that the proposed method yields reasonable performance.