Li, Chang-Lin;Kim, Hyun Joong;Heo, Seo Weon;Han, Tae Hee
JSTS:Journal of Semiconductor Technology and Science
/
제15권6호
/
pp.678-684
/
2015
Near-threshold computing (NTC) is now regarded as a promising candidate for innovative power reduction, which cannot be achieved with conventional super-threshold computing (STC). However, performance degradation and vulnerability to process variation in the NTC regime are the primary concerns. In this paper, we propose a voltage- and frequency-tuning methodology for mitigating the process-variation-induced problems in NTC-based manycore architectures. To implement the proposed methodology, we build up multiple-voltage multiple-frequency (MVMF) islands and apply a voltage-frequency tuning algorithm based on the critical-path monitoring technique to reduce the effects of process variation and maximize energy efficiency in the post-silicon stage. Experimental results show that the proposed methodology reduces overall power consumption by 8.2-20.0%, compared to existing methods in variation-sensitive NTC environments.
시스템-온-칩(system-on-chip, SoC)내에 집적되는 소자의 수가 기하급수적으로 증가함에 따라 에너지 효율을 높이기 위한 전압 스케일링은 필수적인 요소가 되었다. 문턱전압 근처 동작(near-threshold voltage computing, NTC)은 칩 에너지 효율을 10배 가까이 향상시킬 수 있는 기술로서 전통적인 초 문턱전압 동작(super-threshold voltage computing, STC)의 한계를 극복할 수 있을 것으로 기대되고 있다. 저성능 매니코어(manycore) 시스템으로 동작하는 NTC는 에너지 효율을 극대화할 수 있지만 성능 유지를 위한 코어 수의 증가는 상당한 면적 증가를 수반한다. 본 논문에서는 성능, 전력 및 면적 간의 trade-off를 고려하여 면적 제약조건 하에서 NTC 코어 수 및 캐시 및 클러스터 크기 결정 알고리즘을 통해 요구 성능을 만족시키면서 전력 소모를 최적화하는 방법을 제안한다. 실험을 통해 면적 제약조건 속에서 기존의 STC 코어에서의 성능을 유지한 채 전력소모를 약 16.5% 감소시킬 수 있음을 보여준다.
The main objective of this paper is to present the rain cell size distribution observed during squall line episodes in the Sudano-Sahelian region. The used data were collected during the EPSAT Program [Etude des Precipitation par SATellite (Satellites Study of Precipitation)] which has been developed since 1958, on an experimental area located near Niamey, Niger (2 10′32"E, 13 28′38"N). The data were obtained with a C-band radar and a network composed of approximately 100 raingages over a 10,000 $\textrm{km}^2$. In this work a culling of the squall line episodes was made for the 1992 rainy season. After radar data calibration using the raingage network a number of PPI (Plan Position Indicator) images were generated. Each image was then treated in order to obtain a series of radar reflectivity (Z) maps. To describe the cell distribution, a contouring program was used to analyze the areas with rain rate greater than or equal to the contour threshold (R$\geq$$\tau$). 24700 contours were generated, where each iso-pleth belongs to a predefined threshold. Computing each cell surface and relating its area to an equi-circle (a circle having the same area as the cell), a statistical analysis was made. The results show that the number of rain cells having a given size is an inverse exponential function of the equivalent radius. The average and median equivalent radii ate 1.4 and 0.69 In respectively. Implications of these results for the precipitation estimation using threshold methods are discussed.
KSII Transactions on Internet and Information Systems (TIIS)
/
제8권10호
/
pp.3378-3393
/
2014
We have witnessed the rapid development of information technology in recent years. One of the key phenomena is the fast, near-exponential increase of data. Consequently, most of the traditional data classification methods fail to meet the dynamic and real-time demands of today's data processing and analyzing needs--especially for continuous data streams. This paper proposes an improved incremental learning algorithm for a large-scale data stream, which is based on SVM (Support Vector Machine) and is named DS-IILS. The DS-IILS takes the load condition of the entire system and the node performance into consideration to improve efficiency. The threshold of the distance to the optimal separating hyperplane is given in the DS-IILS algorithm. The samples of the history sample set and the incremental sample set that are within the scope of the threshold are all reserved. These reserved samples are treated as the training sample set. To design a more accurate classifier, the effects of the data volumes of the history sample set and the incremental sample set are handled by weighted processing. Finally, the algorithm is implemented in a cloud computing system and is applied to study user behaviors. The results of the experiment are provided and compared with other incremental learning algorithms. The results show that the DS-IILS can improve training efficiency and guarantee relatively high classification accuracy at the same time, which is consistent with the theoretical analysis.
Saxena, Shailesh;Khan, Mohammad Zubair;Singh, Ravendra;Noorwali, Abdulfattah
International Journal of Computer Science & Network Security
/
제21권11호
/
pp.345-353
/
2021
Cloud computing represent a new era of computing that's forms through the combination of service-oriented architecture (SOA), Internet and grid computing with virtualization technology. Virtualization is a concept through which every cloud is enable to provide on-demand services to the users. Most IT service provider adopt cloud based services for their users to meet the high demand of computation, as it is most flexible, reliable and scalable technology. Energy based performance tradeoff become the main challenge in cloud computing, as its acceptance and popularity increases day by day. Cloud data centers required a huge amount of power supply to the virtualization of servers for maintain on- demand high computing. High power demand increase the energy cost of service providers as well as it also harm the environment through the emission of CO2. An optimization of cloud computing based on energy-performance tradeoff is required to obtain the balance between energy saving and QoS (quality of services) policies of cloud. A study about power usage of resources in cloud data centers based on workload assign to them, says that an idle server consume near about 50% of its peak utilization power [1]. Therefore, more number of underutilized servers in any cloud data center is responsible to reduce the energy performance tradeoff. To handle this issue, a lots of research proposed as energy efficient algorithms for minimize the consumption of energy and also maintain the SLA (service level agreement) at a satisfactory level. VM (virtual machine) consolidation is one such technique that ensured about the balance of energy based SLA. In the scope of this paper, we explore reinforcement with fuzzy logic (RFL) for VM consolidation to achieve energy based SLA. In this proposed RFL based active VM consolidation, the primary objective is to manage physical server (PS) nodes in order to avoid over-utilized and under-utilized, and to optimize the placement of VMs. A dynamic threshold (based on RFL) is proposed for over-utilized PS detection. For over-utilized PS, a VM selection policy based on fuzzy logic is proposed, which selects VM for migration to maintain the balance of SLA. Additionally, it incorporate VM placement policy through categorization of non-overutilized servers as- balanced, under-utilized and critical. CloudSim toolkit is used to simulate the proposed work on real-world work load traces of CoMon Project define by PlanetLab. Simulation results shows that the proposed policies is most energy efficient compared to others in terms of reduction in both electricity usage and SLA violation.
이동 컴퓨팅 환경에서 이동 호스트(클라이언트)는 네트워크가 연결되어 있는 동안 단절에 대비하여 중요한 파일들을 자신의 로컬 캐쉬에 저장하여야 한다. 본 논문에서는 클라이언트가 네트워크 단절시 가까운 미래에 사용하게 될 파일을 캐쉬에 저장하는 선인출 메커니즘을 제안한다. 이 메커니즘은 분석기, 선인출 목록 생성기, 그리고 선인출 관리기를 활용한다. 분석기는 클라이언트의 파일 참조 기록을 FAP(File Access Pattern) 프로파일에 저장한다. 선인출 목록 생성기는 이 프로파일을 이용하여 선인출 목록을 만들며, 선인출 관리기는 이 선인출 목록을 파일 서버에게 요청한다. 본 논문은 단지 관련성이 깊은 파일들이 선인출되는 것을 보장하기 위해 TRP(Threshold of Reference Probability) 파라미터를 설정하였다. 선인출 목록 생성기는 참조 확률이 TRP 이상인 파일들을 선인출 목록에 추가한다. 또한, 본 논문은 선인출 목록을 저장하는데 필요한 적재 크기를 줄이기 위해 TACP(Threshold of Access Counter Probability) 파라미터를 사용한다. 마지막으로, 우리는 캐쉬 적중률, 단절 후 클라이언트의 참조 파일 수, 적재 크기를 측정하였다. 시뮬레이션 결과, 선인출 메커니즘의 성능이 LRU 캐슁 메커니즘 보다 우수함을 알 수 있었다. 또한, TACP를 이용한 선인출은 적재 크기를 줄일 수 있으면서도, TACP를 사용하지 않는 선인출과 바슷한 성능을 보임을 확인하였다.
Solar energy harvesting IoT devices prioritize maximizing the utilization of collected energy due to the periodic recharging nature of solar energy, rather than minimizing energy consumption. Meanwhile, research on edge AI, which performs machine learning near the data source instead of the cloud, is actively conducted for reasons such as data confidentiality and privacy, response time, and cost. One such research area involves performing various audio AI applications using audio data collected from multiple IoT devices in an IoT edge computing environment. However, in most studies, IoT devices only perform sensing data transmission to the edge server, and all processes, including data preprocessing, are performed on the edge server. In this case, it not only leads to overload issues on the edge server but also causes network congestion by transmitting unnecessary data for learning. On the other way, if data preprocessing is delegated to each IoT device to address this issue, it leads to another problem of increased blackout time due to energy shortages in the devices. In this paper, we aim to alleviate the problem of increased blackout time in devices while mitigating issues in server-centric edge AI environments by determining where the data preprocessed based on the energy state of each IoT device. In the proposed method, IoT devices only perform the preprocessing process, which includes sound discrimination and noise removal, and transmit to the server if there is more energy available than the energy threshold required for the basic operation of the device.
The health of the human heart is commonly measured using ECG (Electrocardiography) signals. To identify any anomaly in the human heart, the time-sequence of ECG signals is examined manually by a cardiologist or cardiac electrophysiologist. Lightweight anomaly detection on ECG signals in an embedded system is expected to be popular in the near future, because of the increasing number of heart disease symptoms. Some previous research uses deep learning networks such as LSTM and BiLSTM to detect anomaly signals without any handcrafted feature. Unfortunately, lightweight LSTMs show low precision and heavy LSTMs require heavy computing powers and volumes of labeled dataset for symptom classification. This paper proposes an ECG anomaly detection system based on two level BiLSTM for acceptable precision with lightweight networks, which is lightweight and usable at home. Also, this paper presents a new threshold technique which considers statistics of the current ECG pattern. This paper's proposed model with BiLSTM detects ECG signal anomaly in 0.467 ~ 1.0 F1 score, compared to 0.426 ~ 0.978 F1 score of the similar model with LSTM except one highly noisy dataset.
본 논문에서는 수계 영역의 감독 분류 성능을 향상시키기 위하여 블록 기반의 영상 분할과 수계 경계의 확장을 이용하는 수계 검출 방법을 제안한다. 초기 수계 영역을 추출하기 위하여 수계 훈련 지역의 Normalized Difference Water Index (NDWI) 및 Near Infrared (NIR) 밴드 영상의 분광 정보를 이용하여 Mahalanobis 거리 영상을 생성한다. Mahalanobis 거리 영상에 포함된 잡음 성분의 영향을 감소시키기 위해서 인접한 화소의 연결 강도에 의해 확산 계수가 제어되는 평균 곡률 확산을 적용한 후에 초기 수계 영역을 추출한다. 추출된 수계 영상을 같은 크기의 블록으로 분할한 후에 수계 경계에 속하는 수계 영역의 정보를 이용하여 수계 영역을 갱신한다. 수계 경계에 속하는 수계 영역과 수계 훈련 지역 사이의 통계적인 거리가 임계값 이하이면, 수계 영역 갱신을 반복적으로 수행한다. 제안한 알고리즘을 KOMPSAT-2 영상에 적용한 결과 블록 크기가 $11{\times}11$에서 $19{\times}19$사이인 경우에 overall accuracy는 99.47%에서 99.53%, Kappa coefficient는 95.07%에서 95.80%의 분류 정확도를 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.