• 제목/요약/키워드: Near-infrared spectroscopy (NIRS)

검색결과 220건 처리시간 0.034초

MEASUREMENT OF THE CONCENTRATIONS OF RAW MATERIAL, SOYA OIL, AND PRODUCT, MANNOSYL ERYTHRITOL LIPID, IN THE FERMENTATION PROCESS USING NEAR-INFRARED SPECTROSCOPY

  • Kazuhiro Nakamichi;Suehara, Ken-Ichiro;Yasuhisa Nakano;Koji Kakugawa;Masahiro Tamai;Takuo Yano
    • 한국근적외분광분석학회:학술대회논문집
    • /
    • 한국근적외분광분석학회 2001년도 NIR-2001
    • /
    • pp.1157-1157
    • /
    • 2001
  • Yeast, Kurtzurnanomyces sp. I-11, produces biosurfactant, mannosyl erythritol lipid (MEL), from soya oil. The properties of biosurfactant MEL include low-toxicity and high biodegradability. MEL provides new possibilities for a wide range of industrial applications, especially food, cosmetic, pharmaceutical fields and chemicals for biotechnology. In the fermentation process, techniques of measuring and controlling substrates and products are important to obtain high productivity with optimum concentrations of substrate and product in the culture broth. The measurement system for the concentrations of soya oil and MEL in the fermentation process was developed using near-infrared spectroscopy (NIRS). Soya oil and MEL in the culture broth were extracted with ethyl acetate and NIR spectra was carried out between the second derivative NIR spectral data at 1312 and 2040 nm and MEL concentrations obtained using a thin-layer chromatography with a flame-ionization detector (TLC/FID) method. A calibration equation for soya oil was results of the validation of the calibration equation, good agreement was observed between the results of the TLD/FID method and those of the NIRS method for both constituents. NIR method was applied to the measurement of the concentrations of MEL and soya oil in the practical fermentation and good results were obtained. The study indicates that NIRS is a useful method for measurement of the substrate and product in the glycolipid fermentation.

  • PDF

THE USE OF NEAR INFRARED REFLECTANCE SPECTROSCOPY(NIRS) TO PREDICT CHEMICAL COMPOSITION ON MAIZE SILAGE

  • D.Cozzolino;Fassio, A.;Mieres, J.;Y.Acosta
    • 한국근적외분광분석학회:학술대회논문집
    • /
    • 한국근적외분광분석학회 2001년도 NIR-2001
    • /
    • pp.1610-1610
    • /
    • 2001
  • Microbiological examination of silage is of little value in gauging the outcome of silage, and so chemical analysis is more reliable and meaningful indicator of quality. On the other hand chemical assessments of the principal fermentation products provide an unequivocal basis on which to judge quality. Livestock require energy, protein, minerals and vitamins from their food. While fresh forages provide these essential items, conserved forages on the other hand may be deficient in one or more of them. The aim of the conservation process is to preserve as many of the original nutrients as possible, particularly energy and protein components (Woolford, 1984). Silage fermentation is important to preservation of forage with respect of feeding value and animal performance. Chemical and bacteriological changes in the silo during the fermentation process can affect adversely nutrient yield and quality (Moe and Carr, 1984). Many of the important chemical components of silage must be assayed in fresh or by extraction of the fresh material, since drying either by heat or lyophilisation, volatilises components such as acids or nitrogenous components, or effects conversion to other compounds (Abrams et al., 1987). Maize silage dorms the basis of winter rations for the vast majority of dairy and beef cattle production in Uruguay. Since nutrient intake, particularly energy, from forages is influenced by both voluntary dry matter intake and digestibility; there is a need for a rapid technique for predicting these parameters in farm advisory systems. Near Infrared Reflectance Spectroscopy (NIRS) is increasingly used as a rapid, accurate method of evaluating chemical constituents in cereals and dried forages. For many years NIRS was applied to assess chemical composition in dry materials (Norris et al., 1976, Flinn et al., 1992; Murray, 1993, De Boever et al., 1996, De la Roza et al., 1998). The objectives of this study were (1) to determine the potential of NIRS to assess the chemical composition of dried maize samples and (2) to attempt calibrations on undried samples either for farm advisory systems or for animal nutrition research purposes in Uruguay. NIRS were used to assess the chemical composition of whole - plant maize silage samples (Zea mays, L). A representative population of samples (n = 350) covering a wide distribution in chemical characteristics were used. Samples were scanned at 2 nm intervals over the wavelength range 400-2500 nm in a NIRS 6500 (NIRSystems, Silver Spring, MD, USA) in reflectance mode. Cross validation was used to avoid overfitting of the equations. The optimum calibrations were selected on the basis of minimizing the standard error of cross validation (SECV). The calibration statistics were R$^2$ 0. 86 (SECV: 11.4), 0.90 (SECV: 5.7), 0.90 (SECV: 16.9) for dry matter (DM), crude protein (CP), acid detergent fiber (ADF) in g kg$\^$-1/ on dry matter, respectively for maize silage samples. This work demonstrates the potential of NIRS to analyse whole - maize silage in a wide range of chemical characteristics for both advisory farm and nutritive evaluation.

  • PDF

근적외선 분광분석법을 이용한 유량종자의 원산지 판별 (Discrimination of Oil Seeds According to Geographical Origin Using Near Infrared Reflectance Spectroscopy)

  • 권혜순
    • 한국응용과학기술학회지
    • /
    • 제16권1호
    • /
    • pp.21-24
    • /
    • 1999
  • Sesame seed (Sesamum indicum L.) is an important seasoning in Korea and most korean consumer tend to eat the korean sesame seed as the best than other ones produced in oriental countries such as China and Japan. Near infrared reflectance spectroscopy (NIRS) was applied for discrimination according to geographical origin (Korea, China and so on) of sesame seeds. Near-infrared spectroscopy among the many kinds of techniques could provide a rapid screening, low cost solution to discriminate geographical origin of sesame seed. The objective of this study is to determine if NIR technique could be used to discriminate between the korean sesame seed and non-korean sesame seed by using the new method. Rapid, precise and nondestructive analysis method for determination of the geographic origin of sesame seeds were discriminated relative accurately according to geographical origin using PLS regression method.

Nondestructive Prediction of Fatty Acid Composition in Sesame Seeds by Near Infrared Reflectance Spectroscopy

  • Kim, Kwan-Su;Park, Si-Hyung;Choung, Myoung-Gun;Kim, Sun-Lim
    • 한국작물학회지
    • /
    • 제51권spc1호
    • /
    • pp.304-309
    • /
    • 2006
  • Near infrared reflectance spectroscopy (NIRS) was used to develop a rapid and nondestructive method for the determination of fatty acid composition in sesame (Sesamum indicum L.) seed oil. A total of ninety-three samples of intact seeds were scanned in the reflectance mode of a scanning monochromator, and reference values for fatty acid composition were measured by gas-liquid chromatography. Calibration equations were developed using modified partial least square regression with internal cross validation (n=63). The equations obtained had low standard errors of cross-validation and moderate $R^2$ (coefficient of determination in calibration). Prediction of an external validation set (n=30) showed significant correlation between reference values and NIRS estimated values based on the SEP (standard error of prediction), $r^2$ (coefficient of determination in prediction) and the ratio of standard deviation (SD) of reference data to SEP. The models developed in this study had relatively higher values (more than 2.0) of SD/SEP(C) for oleic and linoleic acid, having good correlation between reference and NIRS estimate. The results indicated that NIRS, a nondestructive screening method could be used to rapidly determine fatty acid composition in sesame seeds in the breeding programs for high quality sesame oil.

근적외선 분광분석법을 이용한 판상엽 화학성분 평가 (Evaluation of Chemical Composition in Reconstituted Tobacco Leaf using Near Infrared Spectroscopy)

  • 한영림;한정호;이호근;제병권;강광원;이기열;어성제
    • 한국연초학회지
    • /
    • 제35권1호
    • /
    • pp.1-6
    • /
    • 2013
  • Near InfraRed Spectroscopy(NIRS) is a quick and accurate analytical method to measure multiple components in tobacco manufacturing process. This study was carried out to develop calibration equation of near infrared spectroscopy for the prediction of the amount of chemical components and hot water solubles(HWS) of reconstituted tobacco leaf. Calibration samples of reconstituted tobacco leaf were collected from every lot produced during one year. The calibration equation was formulated as modified partial least square regression method (MPLS) by analyzing laboratory actual values and mathematically pre-treated spectra. The accuracy of the acquired equation was confirmed with the standard error of prediction(SEP) of chemical components in reconstituted tobacco leaf samples, indicated as coefficient of determination($R^2$) and prediction error of sample unacquainted, followed by the verification of model equation of laboratory actual values and these predicted results. As a result of monitoring, the standard error of prediction(SEP) were 0.25 % for total sugar, 0.03 % for nicotine, 0.03 % for chlorine, 0.16 % for nitrate, and 0.38 % for hot water solubles. The coefficient of determination($R^2$) were 0.98 for total sugar, 0.97 for nicotine, 0.96 for chlorine, 0.98 for nitrate and 0.92 for hot water solubles. Therefore, the NIRS calibration equation can be applicable and reliable for determination of chemical components of reconstituted tobacco leaf, and NIRS analytical method could be used as a rapid and accurate quality control method.

POSSIBILITY OF NONDESTRUCTIVE ANALYSIS OF CHOLESTEROL AND COLLAGEN IN ATHEROSCLEROTIC PLAQUES USING NIRS

  • Neumeister, Volker;Lattke, Peter;Schuh, Dieter;Knuschke, Peter;Reber, Friedemann;Steiner, Gerald;Jaross, Werner
    • 한국근적외분광분석학회:학술대회논문집
    • /
    • 한국근적외분광분석학회 2001년도 NIR-2001
    • /
    • pp.4103-4103
    • /
    • 2001
  • The aim of this study was to examine whether near infrared spectroscopy (NIRS) is an acceptable tool to determine cholesterol and collagen in human atherosclerotic plaque without destruction of the analyzed areas and without danger the endothelial cells - three preconditions for the development of a NIR-heart-catheter. The questions were: Can the cholesterol and collagen content of the arterial intima be estimated with acceptable precision in vitro by NIRS despite the matrix inhomogeneity of the plaques and their anatomic variability\ulcorner How deep can such NIR radiation penetrate into arterial tissue without danger for endothelial cells\ulcorner Is this penetration sufficient for information on the lipid and collagen accumulation\ulcorner Using NIRS, cholesterol and collagen can be determined with acceptable precision in model mixtures and human aortic specimens (r=0,896 to 0,957). The chemical reference method was HPLC. The energy dose was 71 mW/$cm^{-2}$ using a fiber optic strand with a length of 1.5m and an optical window of d=4mm. This dose appears to be not dangerous for endothelial cells, It will be attenuated to 50% by a arterial tissue of about 170-$200\mu\textrm{m}$ thickness. The results are also acceptable using a thin coronary catheter-like fiber optic strand (d=1mm).

  • PDF

Prediction of Chemical Composition in Distillers Dried Grain with Solubles and Corn Using Real-Time Near-Infrared Reflectance Spectroscopy

  • Choi, Sung Won;Park, Chang Hee;Lee, Chang Sug;Kim, Dong Hee;Park, Sung Kwon;Kim, Beob Gyun;Moon, Sang Ho
    • 한국초지조사료학회지
    • /
    • 제33권3호
    • /
    • pp.177-184
    • /
    • 2013
  • This work was conducted to assess the use of Near-infrared reflectance spectroscopy (NIRS) as a technique to analyze nutritional constituents of Distillers dried grain with solubles (DDGS) and corn quickly and accurately, and to apply an NIRS-based indium gallium arsenide array detector, rather than a NIRS-based scanning system, to collect spectra and induce and analyze calibration equations using equipment which is better suited to field application. As a technique to induce calibration equations, Partial Least Squares (PLS) was used, and for better accuracy, various mathematical transformations were applied. A multivariate outlier detection method was applied to induce calibration equations, and, as a result, the way of structuring a calibration set significantly affected prediction accuracy. The prediction of nutritional constituents of distillers dried grains with solubles resulted in the following: moisture ($R^2$=0.80), crude protein ($R^2$=0.71), crude fat ($R^2$=0.80), crude fiber ($R^2$=0.32), and crude ash ($R^2$=0.72). All constituents except crude fiber showed good results. The prediction of nutritional constituents of corn resulted in the following: moisture ($R^2$=0.79), crude protein ($R^2$=0.61), crude fat ($R^2$=0.79), crude fiber ($R^2$=0.63), and crude ash ($R^2$=0.75). Therefore, all constituents except for crude fat and crude fiber were predicted for their chemical composition of DDGS and corn through Near-infrared reflectance spectroscopy.

근적외선분광분석기 및 에너지 분산형 X선 형광분석기를 이용한 청국장 원산지 판별 (Identification of the geographical origin of cheonggukjang by using fourier transform near-infrared spectroscopy and energy dispersive X-ray fluorescence spectrometry)

  • 강동진;문지영;이동길;이성훈
    • 한국식품과학회지
    • /
    • 제48권5호
    • /
    • pp.418-423
    • /
    • 2016
  • 근적외선분광분석기와 에너지 분산형 X선 형광분석기를 이용한 분석방법을 개발하여 각각 97.5, 98.0%의 높은 정확도의 판별식을 확립하였고, 시중 유통 시료를 분석하여 검증한 결과 각각 96.3, 95.0%의 판별 정확도를 확인하였다. 이상의 연구 결과를 통하여 근적외선분광분석기와 에너지 분산형 X선 형광분석기를 이용하여 청국장 원산지 판별이 가능함을 확인하였고 이는 유기성분 함량에 따른 근적외선 흡광도와 무기성분 함량에 따른 X선 형광에너지 강도가 국내산과 수입산 간에 차이가 있기 때문으로 사료된다.

Application of time-of-flight near infrared spectroscopy to Satsuma mandarin

  • Tsuchikawa, Satoru;Ito, Satomi;Inoue, Kinuyo;Miyamoto, Kumi
    • 한국근적외분광분석학회:학술대회논문집
    • /
    • 한국근적외분광분석학회 2001년도 NIR-2001
    • /
    • pp.1627-1627
    • /
    • 2001
  • In this study, a newly constructed optical measurement system, whose main components were a parametric tunable laser and a near infrared photoelectric multiplier, was applied to detection of the information for the inside of Satsuma mandarin using time-of-flight near infrared spectroscopy (TOF-NIRS). The combined effects on the time resolved profile of sample diameter, sugar content, the wavelength of the laser beam, and the detection position of transmitted light were investigated in detail. The samples used were Satsuma mandarin (Citrus unshu $M^{ARC}$.) (location: Wakayama, Japan) having the diameters of 50-84 mm. The sugar content measured by a refractometer varied from 9.9 to 16.3 Brix%. Equator of sample was irradiated vertically with the pulsed laser, and transmitted output power was measured on the restricted position of the equator using the optical fiber cable. The sampling time and the number of averaging the output power were 100 ns and 100 times, respectively. The variation of the attenuance of peak maxima At, the time delay of peak maxima t and the variation of full width at half maximum w were strongly dependent on the detection position and the wavelength of the laser beam. At, t and w increased gradually as the sample diameter increased to be much absorbed and vigorously scattered. On the other hand, each optical parameter had a tendency to increase as the sugar content increased. Such behavior was remarkable when the transmitted light was detected at the side face of a sample. When we apply TOF-NIRS to detection of the information for the inside of fruit with high moisture content like Satsuma mandarin, it is very important to give attention to the difference in the scattered light within tissues and the semi-straightly propagated light. Furthermore, we tried to express the resulting phenomena by using a model samples composed of water, sucrose, and milk. The variation of the time resolved profile is strongly governed by the combination of the light absorption component, scattering medium, and refractive index.

  • PDF

Application of time-of-flight near infrared spectroscopy to Satsuma mandarin

  • Tsuchikawa, Satoru;Ito, Satomi;Inoue, Kinuyo;Miyamoto, Kumi
    • 한국근적외분광분석학회:학술대회논문집
    • /
    • 한국근적외분광분석학회 2001년도 NIR-2001
    • /
    • pp.1626-1626
    • /
    • 2001
  • In this study, a newly constructed optical measurement system, whose main components were a parametric tunable laser and a near infrared photoelectric multiplier, was applied to detection of the information for the inside of Satsuma mandarin using time-of-flight near infrared spectroscopy (TOF-NIRS). The combined effects on the time resolved profile of sample diameter, sugar content, the wavelength of the laser beam, and the detection position of transmitted light were investigated in detail. The samples used were Satsuma mandarin (Citrus unshu $M_{ARC}$.) (location: Wakayama, Japan) having the diameters of 50-84 mm. The sugar content measured by a refractometer varied from 9.9 to 16.3 Brix%. Equator of sample was irradiated vertically with the pulsed laser, and transmitted output power was measured on the restricted position of the equator using the optical fiber cable. The sampling time and the number of averaging the output power were 100 ns and 100 times, respectively. The variation of the attenuance of peak maxima At, the time delay of peak maxima $\Delta$t and the variation of full width at half maximum Δw were strongly dependent on the detection position and the wavelength of the laser beam. At, $\Delta$t and $\Delta$w increased gradually as the sample diameter increased to be much absorbed and vigorously scattered. On the other hand, each optical parameter had a tendency to increase as the sugar content increased. Such behavior was remarkable when the transmitted light was detected at the side face of a sample. When we apply TOF-NIRS to detection of the information for the inside of fruit with high moisture content like Satsuma mandarin, it is very important to give attention to the difference in the scattered light within tissues and the semi-straightly propagated light. Furthermore, we tried to express the resulting phenomena by using a model samples composed of water, sucrose, and milk. The variation of the time resolved profile is strongly governed by the combination of the light absorption component, scattering medium, and refractive index.

  • PDF