• Title/Summary/Keyword: Near-infrared fluorescence

Search Result 58, Processing Time 0.032 seconds

Sentinel lymph node mapping using tri-modal human serum albumin conjugated with visible dye, near infrared fluorescent dye and radioisotope

  • Kang, Se Hun;Kim, Seo-il;Jung, So-Youn;Lee, Seeyoun;Kim, Seok Won;Kim, Seok-ki
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.1 no.1
    • /
    • pp.62-73
    • /
    • 2015
  • We developed an evans blue-indocyanine green-$^{99m}Tc$-human serum albumin conjugate for sentinel lymph node mapping and we describe its unique potential usage for clinical implications. This conjugate has combined the strengths of visible blue dye, near-infrared fluorescence and radioisotope into one single conjugate without any additional weakness/disadvantage. All the components of evans blue-indocyanine green-$^{99m}Tc$-human serum albumin are safe and of low cost, and they have already been clinically used. This conjugate was stable in the serum, it showed a long retention time in the lymphatic system and the lymph nodes showed a much higher signal-to-noise ratio after the conjugate was injected intradermally into the paw of mice. Both the single-photon emission computed tomography and near-infrared fluorescent images of the mice were successfully obtained at the same time as the excised sentinel lymph nodes showed blue color. The visual color, near-infrared fluorescence and gamma ray from this agent could be complementary for each other in all the steps of sentinel lymph node sampling: exploring and planning sentinel lymph node before excision with visualization of the exact sentinel lymph node location during an operation. Therefore, the triple modal agent will possibly be very ideal for sentinel lymph node mapping because of the high signal-to-noise ratio for non-invasive imaging and its complementary multimodal nature, easy preparation and safety. It is promising for clinical applications and it may have great advantages over the traditional single modal methods.

Real-Time Localization of Parathyroid Glands with Near Infrared Light during Thyroid and Parathyroid Surgery (갑상선·부갑상선 수술 중 근적외선을 이용한 실시간 부갑상선의 국소화)

  • Kim, Sung Won;Jeong, Yeong Wook;Koh, Yoon Woo;Lee, Kang Dae
    • International journal of thyroidology
    • /
    • v.11 no.2
    • /
    • pp.92-98
    • /
    • 2018
  • Intraoperative identification and localization of parathyroid glands are crucial step in preventing postoperative hypocalcemia during thyroid and parathyroid surgery. If there is a method to predict the parathyroid's location rather than detecting and verifying with naked eye, it would make the operator easier to find and identify the parathyroid. Recently, near-infrared light imaging technologies have been introduced in the fields of thyroid and parathyroid surgery to predict the localization of the parathyroid. These are being conducted in two ways: autofluorescence imaging with a unique intrinsic fluorophore in the parathyroid tissues and fluorescence imaging with external fluorescence materials specially absorbed into parathyroid tissues. We are suggest that parathyroid glands can be detected by surgeon with NIR autofluorescence imaging even if they are covered by fibrofatty tissues before they are detected by surgeon's naked eye. These novel techniques are very useful to identify and preserve parathyroid glands during thyroidectomy. In this article, we reviewed the latest papers that describe autofluorescence imaging and exogenous ICG fluorescence imaging of parathyroid glands during thyroid and parathyroid surgery.

In vivo Dendritic Cell Migration Tracking Using Near-infrared (NIR) Imaging (Near-infrared (NIR) 영상기법을 이용한 생체 내 수지상세포의 이동)

  • Lee, Jun-Ho;Jung, Nam-Chul;Lee, Eun Gae;Lim, Dae-Seog
    • KSBB Journal
    • /
    • v.27 no.5
    • /
    • pp.295-300
    • /
    • 2012
  • Matured dendritic cells (DCs) begin migration with their release from the bone marrow (BM) into the blood and subsequent traffic into peripheral lymphoid and non-lymphoid tissues. Throughout this long movement, migrating DCs must apply specialized skills to reach their target destination. Non-invasive in vivo cell-tracking techniques are necessary to advance immune cell-based therapies. In this study, we used a DiD cell-tracking solution for in vivo dendritic cell tracking in naive mice. We tracked DiD (non-invasive fluorescence dye)-labeled mature dendritic cells using the Near Infrared (NIR) imaging system in normal mice. We examined the immunophenotype of DiD-labeled cells compared with non-labelled mature DCs, and obtained time-serial images of NIR-DC trafficking after mouse footpad injection. In conclusion, we confirmed that DiD-labeled DCs migrated into the popliteal lymph node 24 h after the footpad injection. Here, these data suggested that the cell tracking system with the stable fluorescence dye DiD was useful as a cell tracking tool to advance dendritic cell-based immunotherapy.

Identification of the geographical origin of cheonggukjang by using fourier transform near-infrared spectroscopy and energy dispersive X-ray fluorescence spectrometry (근적외선분광분석기 및 에너지 분산형 X선 형광분석기를 이용한 청국장 원산지 판별)

  • Kang, Dong-Jin;Moon, Ji-Young;Lee, Dong-Gil;Lee, Seong-Hun
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.5
    • /
    • pp.418-423
    • /
    • 2016
  • This study was conducted to identify the geographical origin of soybeans in Cheonggukjang by analyzing its organic components and inorganic elements with Fourier transform near-infrared spectroscopy (FT-NIRS) and with energy dispersive X-ray fluorescence (ED-XRF) coupled with multivariate statistical analysis. For method development, 280 samples from various regions were collected and analyzed. The discriminant accuracy for the developed methods was 97.5% for FT-NIRS and 98.0% for ED-XRF with multivariate statistical analysis. A validation test confirmed the discriminant accuracy to be 96.3% for FT-NIRS and 95.0% for ED-XRF. Overall, the results showed that methods using FT-NIRS and ED-XRF could be used to identify the geographical origin of Cheonggukjang.

Infrared-to-blue Upconversion in Tm-doped Oxyfluoroborate Glasses (Oxyfluoroborate 유리재료에서의 적외선-청색 상방 형광발생)

  • P. Babu;Lee Seon-Gyun;Van-Thai Pham;Im Gi-Su;Seo Hyo-Jin;C. K. Jayasankar
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2002.07a
    • /
    • pp.116-117
    • /
    • 2002
  • In recent years, there has been an increasing interest in $Tm^{3+}$ doped crystals and glasses due to their potential applications as near infrared lasers and infrared to visible upconversion lasers for use in different fields such as medical surgery, eye safe laser radar, data storage, barcode reading and so on. Thulium ions have stable excited levels suitable for emitting blue upconversion fluorescence. (omitted)

  • PDF

Concentration Range Analysis for Fluorescence Expression of Indocyanine Green (Indocyanine green 형광조영제의 형광발현을 위한 농도 범위 분석)

  • Kim, Yong Jae;Lee, Da Ae;Yoon, Ki-Cheol;Kim, Kwang Gi
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.12
    • /
    • pp.1339-1346
    • /
    • 2019
  • In the characteristic of the brain malignant, the blood vessels and tumors have the same color and shape, and the boundary distinction is not clear, Therefore, it is difficult to observe the naked eye. Because of the high invasiveness, the risk of recurrence is high. Therefore, complete resection of the tumor is essential. The method for distinguishing the boundary between blood vessels and tumors is a fluorescence contrast method using indocyanine green (ICG), a fluorescence contrast agent. In ICG, the concentration range analysis is very important because the fluorescence expression state varies depending on the concentration. However, since the analysis result of the fluorescence expression condition is insufficient according to the current concentration, this paper proposes by analyzing the initial protocol of the concentration range. 780 nm infrared light was irradiated to the ICG sample to observe the fluorescence expression through a near infrared (NIR) camera. The wavelength is measured by using a spectrum instrument (ocean view) to observe the fluorescence expression wavelength of 811nm. As a result of analyzing the mol concentration according to each sample, the fluorescence expression range was found to be 16.15-0.16M and the optimum fluorescence concentration on the brightest part was found to be 3.23-0.81M.

A Study on PWM Control of Near-Infrared Fluorescence Imaging System (근적외선 형광 영상시스템의 PWM 제어에 관한 연구)

  • Lee, Byeong-Ho;Pan, Sung Bum
    • The Journal of Korean Institute of Information Technology
    • /
    • v.16 no.11
    • /
    • pp.115-121
    • /
    • 2018
  • Fluorescent images using near-infrared light have no worry about radioactivity, and images can be checked in real time during surgery. Therefore experiments using fluorescent images for monitoring lymph node biopsy are actively under way. Fluorescent imaging equipment uses high heat-generating components such as LED and camera, thus uses water-cooling system as a stable heating suppression means. However in the fluorescent image equipment, the water cooling system takes a large volume which is a disadvantage in terms of miniaturization of the equipment. Even if the air cooling system is used for miniaturizing the equipment, heat generation is a problem. In this paper, we have experimented with the air cooling method using PWM control for the miniaturization of the equipment, and confirmed the constant quality of the fluorescent image and the suppression of the heat generation without any problems even when the equipment is used for a long time.

The Syntheses and Application of NIR Dyes Based On Light Absorbing Properties

  • Park, Soo-Youl;Shin, Seung-Rim;Shin, Joung-Il;An, Kyoung-Lyong;Lee, Sang-Oh;Jun, Kun
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2010.03a
    • /
    • pp.49-50
    • /
    • 2010
  • The near-infrared absorbing donor-acceptor chromophores have been investigated by varying the electron donating and accepting molecular moiety. A series of near-infrared absorbing chromophores were offered narrow and intense absorption band in a various organic solvents. The dyes synthesised were, however, strongly bathochromic shift which extended well into the near-infrared region. The functional uses of dyes are vast in number, and it is convenient to classify them in some way. In all cases, it is the $\Pi$-chromophore that plays a major role in the functional application. "Light absorption" is of course the most commonly used property of a dye chromophore, and it can be employed directly, e.g. in light filters and optical data recording, or it can be used to drive further functional processes, e.g. fluorescence, photochromism, photosensitization.

  • PDF

Development of a multi-modal imaging system for single-gamma and fluorescence fusion images

  • Young Been Han;Seong Jong Hong;Ho-Young Lee;Seong Hyun Song
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3844-3853
    • /
    • 2023
  • Although radiation and chemotherapy methods for cancer therapy have advanced significantly, surgical resection is still recommended for most cancers. Therefore, intraoperative imaging studies have emerged as a surgical tool for identifying tumor margins. Intraoperative imaging has been examined using conventional imaging devices, such as optical near-infrared probes, gamma probes, and ultrasound devices. However, each modality has its limitations, such as depth penetration and spatial resolution. To overcome these limitations, hybrid imaging modalities and tracer studies are being developed. In a previous study, a multi-modal laparoscope with silicon photo-multiplier (SiPM)-based gamma detection acquired a 1 s interval gamma image. However, improvements in the near-infrared fluorophore (NIRF) signal intensity and gamma image central defects are needed to further evaluate the usefulness of multi-modal systems. In this study, an attempt was made to change the NIRF image acquisition method and the SiPM-based gamma detector to improve the source detection ability and reduce the image acquisition time. The performance of the multi-modal system using a complementary metal oxide semiconductor and modified SiPM gamma detector was evaluated in a phantom test. In future studies, a multi-modal system will be further optimized for pilot preclinical studies.