• Title/Summary/Keyword: Near-infrared (NIR) spectroscopy

Search Result 373, Processing Time 0.029 seconds

Design of Pattern Classifier for Electrical and Electronic Waste Plastic Devices Using LIBS Spectrometer (LIBS 분광기를 이용한 폐소형가전 플라스틱 패턴 분류기의 설계)

  • Park, Sang-Beom;Bae, Jong-Soo;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.6
    • /
    • pp.477-484
    • /
    • 2016
  • Small industrial appliances such as fan, audio, electric rice cooker mostly consist of ABS, PP, PS materials. In colored plastics, it is possible to classify by near infrared(NIR) spectroscopy, while in black plastics, it is very difficult to classify black plastic because of the characteristic of black material that absorbs the light. So the RBFNNs pattern classifier is introduced for sorting electrical and electronic waste plastics through LIBS(Laser Induced Breakdown Spectroscopy) spectrometer. At the preprocessing part, PCA(Principle Component Analysis), as a kind of dimension reduction algorithms, is used to improve processing speed as well as to extract the effective data characteristics. In the condition part, FCM(Fuzzy C-Means) clustering is exploited. In the conclusion part, the coefficients of linear function of being polynomial type are used as connection weights. PSO and 5-fold cross validation are used to improve the reliability of performance as well as to enhance classification rate. The performance of the proposed classifier is described based on both optimization and no optimization.

The study of quantitative analytical method for pH and moisture of Hanji record paper using non-destructive FT-NIR spectroscopy (비파괴 분석 방법인 푸리에 변환 근적외선 분광 분석을 이용한 한지 기록물의 산성도 및 함수율 정량 분석 연구)

  • Shin, Yong-Min;Park, Soung-Be;Lee, Chang-Yong;Kim, Chan-Bong;Lee, Seong-Uk;Cho, Won-Bo;Kim, Hyo-Jin
    • Analytical Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.121-126
    • /
    • 2012
  • It is essential to evaluate the quality of Hanji record paper without damaging the record paper by previous destructive methods. The samples were Hanji record paper produced in the 1900s. Near-infrared (NIR) spectrometer was used as a non destructive method for evaluating the quality of record papers. Fourier transform (FT) spectrometer was used with 12,500 to 4,000 $cm^{-1}$ wavenumber range for quantitative analysis and it has high accuracy and good signal-to-noise ratio. The acidity and moisture content of Hanji record paper were measured by integrating sphere as diffuse reflectance type. The acidity (pH) of chemical factors as a quality evaluated factor of Hanji was correlated to NIR spectrum. The NIR spectrum was pretreated to obtain the coefficients of optimum correlation. Multiplicative scatter correction (MSC) and First derivative of Savitzky-Golay were used as pretreated methods. The coefficients of optimum correlation were calculated by PLSR (partial least square regression). The correlation coefficients ($R^2$) of acidity had 0.92 on NIR spectra without pretreatment. Also the standard error of prediction (SEP) of pH was 0.24. And then the NIR spectra with pretreatment would have better correlation coefficient ($R^2$ = 0.98) and 0.19 as SEP on pH. For moisture contents, the linearity correlation without pretreatment was higher than the case with pretreatment (MSC, $1^{st}$ derivative). As the best result, the $R^2$ was 0.99 and SEP was 0.45. This indicates that it is highly proper to evaluate the quality of Hanji record papers speedily with integrated sphere and FT NIR analyzer as a non-destructive method.

Control of Methyl Tertiary-Butyl Ether via Carbon-Doped Photocatalysts under Visible-Light Irradiation

  • Lee, Joon-Yeob;Jo, Wan-Kuen
    • Environmental Engineering Research
    • /
    • v.17 no.4
    • /
    • pp.179-184
    • /
    • 2012
  • The light absorbance of photocatalysts and reaction kinetics of environmental pollutants at the liquid-solid and gas-solid interfaces differ from each other. Nevertheless, many previous photocatalytic studies have applied the science to aqueopus applications without due consideration of the environment. As such, this work reports the surface and morphological characteristics and photocatalytic activities of carbon-embedded (C-$TiO_2$) photocatalysts for control of gas-phase methyl tertiary-butyl ether (MTBE) under a range of different operational conditions. The C-$TiO_2$ photocatalysts were prepared by oxidizing titanium carbide powders at $350^{\circ}C$. The characteristics of the C-$TiO_2$ photocatalysts, along with pure TiC and the reference pure $TiO_2$, were then determined by X-ray diffraction, scanning emission microscope, diffuse reflectance ultraviolet-visible-near infrared (UV-VIS-NIR), and Fourier transform infrared spectroscopy. The C-$TiO_2$ powders showed a clear shift in the absorbance spectrum towards the visible region, which indicated that the C-$TiO_2$ photocatalyst could be activated effectively by visible-light irradiation. The MTBE decomposition efficiency depended on operational parameters, including the air flow rate (AFR), input concentration (IC), and relative humidity (RH). As the AFRs decreased from 1.5 to 0.1 L/min, the average efficiencies for MTBE increased from 11% to 77%. The average decomposition efficiencies for the ICs of 0.1, 0.5, 1.0, and 2.0 ppm were 77%, 77%, 54%, and 38%, respectively. In addition, the decomposition efficiencies for RHs of 20%, 45%, 70%, and 95% were 92%, 76%, 50%, and 32%, respectively. These findings indicate that the prepared photocatalysts could be effectively applied to control airborne MTBE if their operational conditions were optimized.

NIRS ANALYSIS OF MOLASSES AND EATS USED AT THE ANIMAL FEEDS INDUSTRY

  • Garrido-Varo, Ana;Perez-Marin, Maria Dolores;Gomez-Cabrera, Augusto;Guerrero-Ginel, Jose Emilio;Paz, Felix De;Delgado, Natividad
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1613-1613
    • /
    • 2001
  • Fats and molasses are used, at the present time, in a considerable proportion as ingredients for the animal feed industry. They are mainly used as energy sources, but also they provide other characteristics of technological and nutritional interest (dust reduction, increase in palatability, etc). Both semi-liquid ingredients have numerous aspects in common from the point of view of their use in livestock feeds, as well as of their analytical control. Feed manufacturers use several criteria to evaluate the quality of fat and molasses. Furthermore, the traditional methods currently used, for their evaluation (eg. fatty acids, sugars, etc) are expensive and more sophisticated that the traditionally used for solid ingredients. The objective of the present work is to carry out a viability study to evaluate the ability of NIRS technology for the quality control of fat and molasses. Samples of liquid molasses (n = 42) and liquid fat ( n = 61), provided by a feed manufacturer, were scanned in a FOSS-NIR Systems 6500 monochromator equipped with a spinning module. The samples were analysed by folded transmission, using a sample cup of 0.1mm pathlength and gold surface reflector. For molasses, calibration equations were developed for the prediction of moisture (SECV=1.69%; $r^2$=0, 42), gross protein (SECV=0, 14%; $r^2$=0, 99), ashy (SECV=0, 60%; $r^2$=0, 84), NaCl (SECV=0, 05%; $r^2$=0, 99) and sugars (SECV=1, 04%; $r^2$=0, 86). For animal fats calibrations were obtained for the prediction of moisture (SECV=0, 14%, $r^2$=0, 88), acidity index (SECV=0, 83%, $r^2$=0, 82), MIU (SECV=0, 38%, $r^2$=0, 94) and unsaponifiables (SECV=0, 45%, $r^2$=0, 87). High accuracy calibration equations were also obtained for the prediction of the fatty acid profile. The equations have $r^2$values around 0.9 or highest. The results showed that NIRS technology could provide rapid and accurate results and reduce analytical costs associated to the quality control of two Important feed ingredients of a well known chemical variability.

  • PDF

UNDERSTANDING THE H STATISTIC DURING ROUTINE ANALYSIS OF ANIMAL FATS.

  • Juan, Garcia-Olmo;Ana, Garrido-Varo;Emiliano, De-Pedro
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1243-1243
    • /
    • 2001
  • During two consecutive years, it was developed global calibrations for the prediction of fatty acids on Iberian pig fat. These equations should analyse well samples of that animal fat because of their high accuracy (SECV/sub C16:0/ = 0.26%; SECV/sub C18:0/ = 0.28%; SECV/sub C18:1/ = 0.26%; SECV/sub C18:2/ = 0.15%) and their broad covering composition range. In some cases, when new samples are predicted H (Mahalanobis distance) values higher than 3 (recommended value for agricultural products by the ISI software) are obtained. However, there are not any obvious factors which tells that samples scanned are very different to the spectral mean of the calibration population. Furthermore, these samples are well predicted according to the SEP values. The objective of the present work is to deepen the understanding of the H statistic when analysing animal fats. Three different validation files were predicted with equations obtained from January '97 to April '98. The Set A has spectra of 20 samples not included on the calibration file and scanned in May of 1998. The Set B has spectra of 20 samples included on the calibration file and scanned again in November '99. The Set C contains 150 spectra of one sample representative of the mean values (for fatty acids composition) of the calibration file. This sample was analysed three times per week during June '99 to July '00. The H mean values for the Set A, Set B and Set C were respectively 1.35, 14.39 and 11.71. These anomalous values for the Set B and C make not sense because Set B contains replicate subsamples of the same samples scanned during calibration development and Set C only contains spectra of one sample which represent the mean spectrum of the calibration files. Results will be shown to demonstrate that small day to day variations are responsible of the high H values. When a PCA and LIB file are created with calibration samples and spectra of the Set C modelling day to day variations, the H values for Set A, Set B and Set C were respectively 1.83, 2.16 and 0.93.

  • PDF

Prediction on the Quality of Forage Crop by Near Infrared Reflectance Spectroscopy (근적외선 분광법에 의한 사초의 성분추정)

  • Lee, Hyo-Won;Kim, Jong-Duk;Kim, Won-Ho;Lee, Joung-Kyong
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.29 no.1
    • /
    • pp.31-36
    • /
    • 2009
  • This study was conducted to find out an alternative way of rapid and accurate analysis of forage quality. Near reflectance infrared spectroscopy (NIRS) was used to evaluate the possibility of forage analysis and collect 258 samples such as barley for whole crop silage, forage corn and sudangrass from 2002 to 2007. The samples were analyzed for CP (crude protein), CF (crude fiber), ADF (acid detergent fiber), NDF (neutral detergent fiber) and IVTD (in vitro true digestibility), and also scanned using NIRSystem with wavelength from $400{\sim}2,400nm$. Multiple linear regression was used with wet analysis data for developing the calibration model and validate unknown samples. The important index In this experiment was SEC and SEP $r^2$ for CF, CP, NDF, ADF and IVTD in calibration set were 0.70, 0.86, 0.94, 0.94 and 0.89, also 0.47, 0.39, 0.89, 0.90 and 0.61 in validation sample, respectively. The results of this experiment indicates that NIRS was reliable analytical method to assess forage quality, specially in CF, ADF and IVTD, sample should be included for respective forage samples to get accurate result. More robust calibrations can be made to cover every forage samples if added representative sample set.

Neuro-scientific Approach to Fashion Visual Merchandising -Comparison of Brain Activation to Positive/Negative VM in Fashion Store Using fNIRS- (패션 비주얼머천다이징의 뇌 과학적 접근 -fNIRS를 이용한 패션매장의 긍정적/부정적 VM에 대한 뇌 활성 비교-)

  • Kim, Hyoung Suk;Lee, Jin Hwa
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.41 no.2
    • /
    • pp.254-265
    • /
    • 2017
  • This study examines the possibility of a neuro-scientific approach to fashion Visual Merchandising (VM), by researching the brain activation of customers about fashion stores in terms of VM. Study subjects were in 20's-30's residing in Busan and ten ordinary person or fashion industry related individuals, it measures the change of cerebral blood flow on positive/negative photo stimulus in terms of VM using a functional Near Infrared Spectroscopy (fNIRS) device, and then compared the brain activation to the difference of the fashion store VM. Photo stimuli utilized in the experiment were selected through a preliminary study in advance. The results of this study are as follows. First, the brain activation was found in all 16 channels of stimulus ranges of fashion store VM regardless of positive/negative stimulus. This means that the VM of fashion store causes changes to the cerebral blood flow of consumers, which implies that consumer behavior can be affected by store VM. It also shows that the brain is more active in negative VM stimulus than positive VM despite slight differences in the subjects. In terms of VM, this suggests that the negative factors of fashion stores have a greater effect on the brains of consumers compared to the positive factors. Second, the reaction of the brain channel is different according to the positive/negative VM stimulus of the fashion store by product group and confirms that positive/negative VM stimulus can be distinguished by brain-reaction for the three product groups except for the underwear group among four product groups (men's wear store, women's wear store, underwear store, and sportswear store). The results indicate that more objective scientific measure and decision-making are possible through neuro-science in the strategic execution of VM. This study verified the possibility for a neuro-scientific approach to fashion VM; therefore, there are expectations for the various activation of interdisciplinary research and subsequent development of VM that utilize neuroscience in fashion marketing.

Prediction on the Quality of Forage Crop Seeded in Spring by Near Infrared Reflectance Spectroscopy (NIRS) (근적외선 분광법에 의한 춘계 파종 사초의 성분추정)

  • Lee, Hyo-Won
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.31 no.4
    • /
    • pp.409-414
    • /
    • 2011
  • This study was conducted to find out an alternative way of rapid and accurate analysis of forage quality. Near Infrared Reflectance Spectroscopy (NIRS) was used to evaluate the possibility of forage analysis. 175 samples consisted of Italian ryegrass, whole crop barley and pea seeded spring in 2009 were collected. The samples were analyzed for moisture, crude protein (CP), crude ash (CA), acid detergent fiber (ADF), and neutral detergent fiber (NDF), and also scanned using NIRSystem with wavelength from 400~2,500 nm. Multiple linear regression was used with wet analysis data for developing the calibration model and validated unknown samples. The important index in this experiment were SEC, SEP. The r2 value for moisture, CP, CA, ADF, and NDF in calibration set was 0.65, 0.97, 0.93, 0.99, and 0.97 and also was 0.15, 0.94, 0.96, 0.98 and 0.98 in validation set, respectively. The results of this experiment indicates that NIRS was reliable analytical method to assess forage quality for CP, CA ADF and NDF except moisture content in forage when proper samples incorporated into the equation development.

Use of Near Infrared Reflectance Spectroscopy for Determination of Grain Components in Barley (보리종실 성분분석을 위한 근적외선분광광도계의 이용방법)

  • Kim, Byung-Joo;Park, Eui-Ho;Suh, Hyung-Soo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.40 no.6
    • /
    • pp.716-722
    • /
    • 1995
  • Near Infrared Reflectance Spectroscopy (NIRS) has been used as a tool for the rapid, accurate and nondestructive assay of small grain and forage quality analysis. The objective of this study was to establish the rapid, easy and accurate analysis method for major components of covered barley using NIRS system. NIRS used in this study was filter type instrument, Neotec 102. To obtain a useful calibration equation, standard regression between the data was analyzed by chemical analysis and by NIRS method. Standard errors of prediction (SEP) and simple correlations for unknown samples were calculated using obtained equation. SEPs for starch, $\beta$-glucan, protein and ash contents were 2.75%, 0.64%, 0.26% and 0.19%, respectively. The simple correlations for starch, $\beta$-glucan, protein and ash contents were 0.932, 0.588, 0.984 and 0.867, respectively. It was concluded that the NIRS method would be applicabl for the rapid determination of starch, protein and ash contents in barley grains.

  • PDF

CHEMICAL AND MICROBIOLOGICAL ANALYSIS OF GOAT MILK, CHEESE AND WHEY BY NIRS

  • Perez Marin, M.D.;Garrido Varo, A.;Serradilla, J.M.;Nunez, N.;Ares, J.L.;Sanchez, J.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1513-1513
    • /
    • 2001
  • Present Food Legislation compels dairy industry to carry out analyses in order to guarantee the food safety and quality of products. Furthermore, in many cases industry pays milk according to bacteriological or/and nutritional quality. In order to do these analyses, several expensive instruments are needed (Milkoscan, Fossomatic, Bactoscan). NIRS technology Provides a unique instrument to deal with all analytical requirements. It offers as main advantages its speed and, specially, its versatility, since not only allows determine all the parameters required in milk analysis, but also allows analyse other dairy products, like cheese or whey. The objective of this study is to develop NIRS calibration equations to predict several quality parameters in goat milk, cheese and whey. Three sets of 123 milk samples, 190 cheese samples and 109 whey samples, have been analysed in a FOSS NIR Systems 6500 I spectrophotometer equipped with a spinning module. Milk and whey were analysed by folded transmission, using circular cells with gold surface and pathlength of 0.1 m, while intact cheese was analysed by reflectance using standard circular cells. NIRS calibrations were obtained for the prediction of chemical composition in goat milk, for fat (r$^2$=0.92; SECV=0.20%), total solids (r$^2$=0.95: SECV=0.22%), protein (r$^2$=0.94; SECV=0.07%), casein (r$^2$=0.93; SECV=0.07%) and lactose (r$^2$=0.89; SECV=0.05%). Moreover, equations have been performed to determine somatic cells (r$^2$=0.81; SECV=276.89%) and total bacteria (r$^2$=0.58; SECV=499.32%) counts in goat milk. In the case of cheese, calibrations were obtained for the prediction of fat (r$^2$=0.92; SECV=0.57), total solids (r$^2$=0.80; SECV=0.92%) and protein (r$^2$=0.70; SECV=0.63%). In whey, fat (r$^2$=0.66; SECV=0.08%), total solids (r$^2$=0.67; SECV=0.19%) and protein (r$^2$=0.76; SECV=0.07%) NIRS equations were obtained. These results proved the viability of NIRS technology to predict chemical and microbiological parameters and somatic cells count in goat milk, as well as chemical composition of goat cheese and whey.

  • PDF