• Title/Summary/Keyword: Near-field Recording

Search Result 96, Processing Time 0.028 seconds

Optimal Design of Optical Flying Head for Near-field Recording (근접장 기록을 위한 부상형 광학 헤드의 최적설계)

  • 윤상준;김석훈;정태건;김수경;최동훈
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.10
    • /
    • pp.785-790
    • /
    • 2003
  • This paper presents an approach to optimally design the air-hearing surface (ABS) of the optical flying head for near-field recording technology (NFR) NFR is an optical recording technology using very small beam spot size by overcoming the limit of beam diffraction. One of the most important problems in NFR Is a head disk interface (HDI) issue over the recording band during the operation. A multi-criteria optimization problem is formulated to enhance the flying performances over the entire recording band during the steady state. The optimal solution of the slider, whose target flying height is 50 nm, is automatically obtained. The flying height during the steady state operation becomes closer to the target values than those for the Initial one. The pitch and roll angles are also kept within suitable ranges over the recording band. Especially. all of the all-hearing stiffness are drastically increased by the optimized geometry of the air hearing surface.

Investigation of Interface between Slider and Plastic Disk for Optical Head (Optical head를 고려 한 slider와 plastic disk의 interface에 대한 연구)

  • 박진무;정구현;김대은
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.193-198
    • /
    • 2000
  • Near-field recording NFR), advanced optical storage technology, relies on maintaining a small gap between the optical head and the media. This can be accomplished by utilizing the flying optical head concept as in the magnetic recording. In this research, slider/suspension system and plastic disk are tested for their head/disk interface performance. CSS tests are conducted to monitor the frictional and flying characteristics of sliders.

  • PDF

Optimal design of slider for stable flying characteristic using 4${\times}$l near-field probe array

  • Jung Min-su;Hong Eo-Jin;Park Kyoung-Su;Park No-Cheol;Yang Hyun-Seok;Park Young-Pil;Lee Sung-Q;Park Kang-Ho
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.171-176
    • /
    • 2005
  • In the information storage development, the trend of the storage device is to increase the recording density. Among such an effort, near-field probe recording is spotlighted as a method of high increasing recording density. For the successfully embodiment of storage device, the actuating mechanism of near-field probe is essentially designed. In this paper, we suggest the slider similar with conventional HDDs and design the slider using near- field probe for the purpose of applying the slider in order to control gap between probe and media. The most important object of slider design is to guarantee the flying ability and stability. For achievement of these design objects, we perform two step of optimal design process. The media is mod! eled as random displacement, which is only considered roughness of disk surface. The design slider is analyzed with dynamic state in assumed media. At this process, the optimal model is confirmed to stable flying stability.

  • PDF

Optimal Design of Slider for Stable Flying Characteristics using $4{\times}1$ Near-field Probe Array

  • Jung, Min-Su;Hong, Eo-Jin;Park, Kyoung-Su;Park, No-Cheol;Yang, Hyun-Seok;Park, Young-Pil;Lee, Sung-Q;Park, Kang-Ho
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.1
    • /
    • pp.65-70
    • /
    • 2006
  • In the information storage development, the trend of the storage device is to increase the recording density. Among such an effort, near-field probe recording is spotlighted as a method of high increasing recording density. For the successfully embodiment of storage device, the actuating mechanism of near-field probe is essentially designed. In this paper, we suggest the slider similar with conventional HDD and design the slider using near-field probe for the purpose of applying the slider in order to control gap between probe and media. The most important object of slider design is to guarantee the flying ability and stability. For achievement of these design objects, we perform two step of optimal design process. The media is supposed to model as random displacement, which is only considered roughness of disk surface. The design slider is analyzed with dynamic state in assumed media. At this process, the optimal model is confirmed to stable flying stability.

  • PDF

Analysis on Phase and Amplitude Apodization in SIL Based Near-Field Recording Optics (SIL 응용 광 기록계에서 발생하는 위상 및 진폭 Apodization 해석)

  • Kim Wan-Chin;Choe Hyeon;Song TaeSun;Park No-Cheol;Park Young-Pil
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.14-15
    • /
    • 2005
  • In near-field recording (NFR) optics using solid immersion lens (SIL), near-field air gap induces unwanted spherical aberration, defocus and astigmatism. This phenomenon can be explained with the apodization of phase and amplitude between each linearly polarized light. In this paper, we analyzed the effect of phase and amplitude apodization with the fundamental multiple beam interference theory, and we compared resultant diffracted patterns on the image plane for the Si-disk first surface media structure and cover-layer incident media structure.

  • PDF

Multiplexed, Stack-wise, and Parallel Recording of Near-field Binary Holograms (근접장 이진 홀로그램의 다중화, 다층화 및 병렬 저장)

  • Kim, Kyoung-Youm;Kang, Jin-Gu;Lee, Byoung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2001.11a
    • /
    • pp.47-49
    • /
    • 2001
  • We present experimental results on the multiplexed and stack-wise recording of near-field holograms. Experiments on angular multiplexing show that the angular selectivity of near-field hologram is better than that of the conventional hologram Experiments on stack-wise recording prove that near fields originated from sub-diffraction-limit-size objects could be stored in a photorefractive crystal at 2 mm apart from the crystal surface. In addition, to improve the data access and transfer time silicon nano-aperture array was introduced and applied to the near-field holographic storage.

  • PDF

Advanced SIL(A-SIL) system for Near Field Recording (A-SIL 을 이용한 근접장 저장)

  • Han, I.G.;Shin, Y.S.;Park, J.M.;Lee, J.U.;Seo, J.K.;Choi, I.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1028-1030
    • /
    • 2007
  • Mutual compensating concept between SIL(Solid Immersion Lens) and OL(Objective Lens) of NFR(Near Field Recording) is proposed, designed and manufactured to achieve a high NA and obtain a wider manufacturing tolerance. Tolerance information is present in article. An effective NA of Advanced SIL is 1.7 and adjustment between OL and SIL is carried out using our interferometer. We measured very clear RF signal using 3-axis actuator at Test bed.

  • PDF

Disk Vibration and Eccentricity Compensation of Near Field Recording Systems Based on the Internal Model Principle (IMP를 이용한 근접장 기록 장치의 디스크 진동 및 편심 보상)

  • Jeong, Jun;Kim, Joong-Gon;Park, No-Cheol;Yang, Hyun-Seok;Park, Young-Pil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.6 s.123
    • /
    • pp.539-546
    • /
    • 2007
  • Information storage devices using disks have a disk vibration at the frequency which is equivalent to the disk rotational speed. They also have a track vibration due to the disk eccentricity at the same frequency. In near field recording systems, the former affects the air-gap servo and the latter affects the tracking servo. In this paper, we introduce a novel control algorithm based on the internal model principle to both servos. A controller block designed by the principle is connected to the base lead-lag type compensator in parallel in order to cancel the repeatable run-out due to the disk vibration or eccentricity. Simulation and practical application of the algorithm on a near field recording system show good servo performance.

Cover Layer Design and Temperature Analysis in Pseudo NFR System Using SIL Head (SIL 헤드유사 근접장 시스템 개발을 위한 보호막 설계 및 열해석)

  • Kim Kyungho;Kim Sookyung;Lee Sung-Q;Park Kang-Ho;Lee Seung-Yop
    • Transactions of the Society of Information Storage Systems
    • /
    • v.1 no.1
    • /
    • pp.58-66
    • /
    • 2005
  • Pseudo-Near Field Recording (Pseudo-NFR) system is proposed to prevent contamination and oxidation of media surface occurred in conventional NFR systems. To solve these critical problems of the NFR systems, we investigate the optimal thickness of cover layer for Pseudo NFR. This paper presents the theoretical analysis for cover layer thickness based on the measured length of dust particle and numerical simulation for the temperature distribution using Finite Difference Time Domain (FDTD) method and heat conduction equation. To verify the simulation results, we conduct and compare simulation results in case of far field MO recording and near field MO recording. A measured dust particle length in general environment was mostly less than $20{\mu}m$, and the optimal thickness of cover layer is $30{\mu}m$ in this case. Based on the designed optimal cover layer thickness, temperature distribution is simulated to have $800{\~}850^{\circ}C$.

  • PDF