• Title/Summary/Keyword: Near-Zone Signal

Search Result 14, Processing Time 0.018 seconds

High Resolution Shallow Seismic Reflection Survey for the Investigation of Ground Disturbance Area (지반교란 영역 규명을 위한 고분해능 천부 탄성파 반사법 탐사)

  • Ko, Kwang-Beom;Lee, Doo-Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.1
    • /
    • pp.28-34
    • /
    • 2003
  • A problem of ground subsidence has been a focus of our research over the past 3 years. The purpose of this study is to investigate the disturbed stratigraphic structure by mining and to separate the possible ground subsidence area using shallow seismic reflection survey and processing. To overcome the problems such as the distortion and attenuation of seismic signal caused by ground disturbance and to acquire the high frequency data, an array with short spacing (0.3m) for both the shot and receivers, yielding near-offset (<30m) and CMP spacing of 0.15m was implemented. Data were acquired along the survey line with length of about 43m by fixed receiver array. By considering statics caused by the ground disturbance and offset distribution of data, careful processing steps such as muting and residual statics correction were applied for successful shallow reflection imaging. By correlating the ground subsidence data and stack section, possible subsidence zone could be interpreted quantitatively.

Prediction of Evacuation Time for Emergency Planning Zone of Uljin Nuclear Site (울진원전 방사선비상계획구역에 대한 소개시간 예측)

  • Jeon, In-Young;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.27 no.3
    • /
    • pp.189-198
    • /
    • 2002
  • The time for evacuation of residents in emergency planning zone(EPZ) of Uljin nuclear site in case of a radiological emergency was estimated with traffic analysis. Evacuees were classified into 4 groups by considering population density, local jurisdictions, and whether they ate residents or transients. The survey to investigate the behavioral characteristics of the residents was made for 200 households and included a hypothetical scenario explaining the accident situation and questions such as dwelling place, time demand for evacuation preparation transportation means for evacuation, sheltering place, and evacuation direction. The microscopic traffic simulation model, CORSIM, was used to simulate the behavior of evacuating vehicles on networks. The results showed that the evacuation time required for total vehicles to move out from EPZ took longer in the daytime than at night in spite that the delay times at intersections were longer at night than in the daytime. This was analyzed due to the differences of the trip generation time distribution. To validate whether the CORSIM model fan appropriately simulate the congested traffic phenomena assumable in case of emergency, a benchmark study was conducted at an intersection without an actuated traffic signal near Uljin site during the traffic peak-time in the morning. This study indicated that the predicted output by the CORSIM model was in good agreement with the observed data. satisfying the purpose of this study.

Development of an Imaging Based Gang Protection System

  • Grimm, M.;Pelz, M.
    • International Journal of Railway
    • /
    • v.1 no.4
    • /
    • pp.149-156
    • /
    • 2008
  • During maintenance or construction works in or at the tracks of railways, high risks for passengers and railway staff, especially for the workers on the construction site exist. The high risks result out of the movement of rail vehicles, like trains or construction vehicles, which must be faced by using any available technical and operational technologies for securing them against the environment. Therefore, it is necessary to evaluate the level of protection continuously and to identify new and innovative methods and technologies for the protection of the gang (construction worker, machines and material). Especially on construction sites at line sections with two or more parallel tracks but also with single tracks, there are still a lot of incidents and accidents mostly with seriously injured persons or fatalities. These were mainly gang members that breach the railway-loading gage. By using proper warning or protection systems, the avoidance of such accidents must be achieved. The latest developments. in gang protection systems concern on the one hand fixed barriers in the middle between the construction site and the operated track and on the other hand construction vehicles equipped with automatic warning systems. The disadvantage of such protection methods is that the gang can be warned against an approaching train but a monitoring of the gang members cannot be performed. Only one part of a potential dangerous situation will be detected. If the gang members will overhear the acoustic warning signal of the security staff and the workers will not leave the danger zone in the track, the driver of the approaching train had no chance to react to the dangerous situation. An accident is often inevitable. While the detection of acoustic warning signals by the gang members working on a construction site is very difficult, the acoustical planning of an automatic warning system has to be designed for an acoustic short range level of one meter besides the construction vehicle. The decision about the use of today's technical warning system (fixed systems, automatic warning systems, etc.) must be geared to the technical feasibility and the level of safety which is needed. Criteria for decision guidance to block a track should be developed by danger estimation and economical variables. To realize the actual jurisdiction and to minimize the hazards of railway operations by the use of construction vehicles near the tracks further developments are needed. This means, that the warning systems have to be enhanced to systems for protection, which monitor the realization of the warning signal as a precondition for giving a movement authority to a train. This method can protect against accidents caused by predictable wrongdoing. The actual state of the art technique of using a collective warning combined with additional security staff is no longer acceptable. Therefore, the Institute of Transportation System of the German Aerospace Center in Braunschweig (Germany) will develop a gang warning and protection system based upon imaging methods, with optical sensors such as video in visible and invisible ranges, radar, laser, and other. The advantage of such a system based on the possibility to monitor both the gang itself and the railway-loading gauge either of the parallel track or of the same track still in use. By monitoring both situations, the system will be able to generate a warning message for the approaching train, that there are obstacles in the track, so that the train can be stopped to prevent an accident. And also the gang workers will be warned, while they breach their area.

  • PDF

P-wave Velocity Anisotropy in the Upper Crust of the Southern Korean Peninsula Using Seismic Signals from Large Explosions (대규모 발파자료를 이용한 한반도 남부 상부지각의 종파 속도 이방성)

  • Hong, Myung-Ho;Kim, Ki-Young
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.3
    • /
    • pp.225-232
    • /
    • 2009
  • As part of seismic experiments investigating crustal velocity structures of the Korean peninsula, permanent (fixed) seismographs of the Korea Meteorological Administration (KMA) network recorded seismic signals from four and eight large explosions in Korean Crustal Research Team (KCRT) profiles shot in 2004 and 2008, respectively. Among the seismograms recorded by 43 velocity sensors and 103 accelerometers at KMA stations distributed throughout the southern Korean Peninsula, 156 records with epicentral distances less than 120 km and high signal-to-noise ratios were analyzed to determine velocity anisotropy of the Pg phase. Relative elevation corrections of -101.6 to 105.3 ms were made using velocity information derived from the 2004 KCRT profile data and differences in elevation between the permanent KMA stations and the temporary stations in the KCRT profiles at the same source-receiver offsets. To remove site effects, receiver-station corrections of -89.6 to 192.2 ms were additionally made to the KMA station data by subtracting the average differences in traveltimes between KMA stations and portable stations at the same offsets for all available shots with different azimuths. With the exception of anomalously fast velocities along trends of the Chugaryeong fault zone and the Okchon fold belt and anomalously slow velocities in the regions of high terrestrial heat near Yeongduk and Ulsan, the analysis of crustal velocity anisotropy using the Pg phase indicates overall isotropy in the southern half of the Korean peninsula.