• Title/Summary/Keyword: Near-Wake

Search Result 248, Processing Time 0.028 seconds

A Study of Generation of Coherent Vortex in Late Wake (잔류내 응집 구조 와류의 생성에 관한 연구)

  • Lee Sungsu
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.443-446
    • /
    • 2002
  • Wake downstream of an object in the stratified flow has been of long-standing interest in fluid dynamics because of its similarity to geophysical flow over topographical terrains and more recently, concerns about the wake left behind a body moving through the ocean thermocline. Decades of studies of geophysical flow have unveiled that the flow downstream of obstacles in stratified flow consists of attached wake and strong internal waves, or separated, fluctuating wake and persistent late wakes, all of which depend on the flow conditions. Among unique and interesting characteristics of the stratified flow past obstacles is the generation of coherent vortex structure in the late wake far downstream of the object. Without the density stratification, the flow field downstream becomes undisturbed after relatively fast diminishing of the near wake. However, no matter how small the stratification is, the flow field downstream self-develops coherent vortex structures even after diminishing of the near wake. This paper present a computational approach to simulate the generation mechanism of the coherent vortex and analysis of the vortical structure.

  • PDF

An Experimental Study of Mutual Relation between Wake and Boundary Layer of a Flat Plate; Mean Velocity Field (평판 경계층과 후류와의 상호관계에 관한 연구; 평균속도장)

  • Kim, Dong-Ha;Chang, Jo-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.10
    • /
    • pp.1-11
    • /
    • 2004
  • An experimental study was carried out to investigate the influence of flow conditions of a boundary layer on the near-wake of a flat plate. Various attaching positions of tripping wires were selected to change flow conditions on a boundary layer. Laminar, transitional, and turbulent boundary layer conditions at 0.98C from the leading edge are imposed to investigate the evolution of symmetric and asymmetric wake. An x-type hot-wire probe(55P61) is employed to measure at 8 stations of the near-wake region. Measured mean velocity distributions are presented in terms of similarity parameter. It is found that the symmetric wake collapses well to the universal profile in the central part of the wake. However, the universal profile is not suitable in describing an asymmetric wake.

Flow Characteristics of Wake Flow with Relation to a Tip Leakage Vortex at Different Flow Rates in an Axial Flow Fan (유량에 따른 축류홴의 익단누설와류 및 후류 특성)

  • Kim Kwang-Yong;Jang Choon-Man
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.3 s.234
    • /
    • pp.322-329
    • /
    • 2005
  • The flow characteristics in the blade passage and in the wake region of a low speed axial flow fan have been investigated by experimental analysis using a rotating hot-wire sensor for design and off-design operating conditions. The results show that the tip leakage vortex is moved upstream when flow rate is decreased, thus disturbing the formation of wake flow near the rotor tip. The tip leakage vortex interfaces with blade pressure surface, and results in high velocity fluctuation near the pressure surface. From axial velocity distributions downstream of the fan rotor, large axial velocity decay near the rotor tip is observed at near stall condition, which results in large blockage compared to that at the design condition. Although the wake flow downstream of the rotor blade is clearly measured at all operating conditions, the trough of the high velocity fluctuation due to Karmann vortex street in the wake flow is mainly observed at a higher flow condition than the design flow rate.

Numerical and wind tunnel simulation of pollutant dispersion in the near wake of buildings

  • Wang, X.;McNamara, K.F.
    • Wind and Structures
    • /
    • v.8 no.6
    • /
    • pp.427-442
    • /
    • 2005
  • Numerical and wind tunnel simulations of pollutant dispersion around rectangular obstacles with five aspect ratios have been conducted in order to identify the effects of flow patterns induced by buildings on plume dispersion in the near wake of buildings. An emission from a low source located upwind of obstacles was used in this simulation. The local flow patterns and concentrations around a cubical obstacle were initially investigated using three RANS turbulence models, (the standard $k-{\varepsilon}$, Shear Stress Transport (SST), Reynolds-Stress RSM turbulence model) and also using Large-eddy simulation (LES). The computed concentrations were compared with those measured in the wind tunnel. Among the three turbulence models, the SST model offered the best performance and thus was used in further investigations. The results show, for normal aspect ratios of width to height, that concentrations in the near wake are appreciably affected because of plume capture by the horseshoe vortex and convection by the vertical vortex pairs. These effects are less important for high aspect ratios. Vertical vortex pairs present a strong ability to exchange mass vertically and acts efficiently to reduce ground-level concentrations in the near wake.

Flow Structure of the Wake behind an Elliptic Cylinder Close to a Free Surface

  • Daichin;Lee, Sang-Joon
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.12
    • /
    • pp.1784-1793
    • /
    • 2001
  • The flow fields around an elliptic cylinder of axis ratio AR=2 adjacent to a free surface were investigated experimentally using a water channel. The main objective is to understand the effect of the free surface on the flow structure in the near-wake. The flow fields were measured by varying the depth of cylinder submergence, for each experimental condition, 350 velocity fields were measured using a single-frame PIV system and ensemble-averaged to obtain the spatial distribution of turbulent statics. For small submergence depths a large-scale eddy structure was observed in the near-wake, causing a reverse flow near the free surface, downstream of the cylinder. As the depth of cylinder submergence was increased, the flow speed in the gap region between the upper surface of the cylinder and the free surface increased and formed a substantial jet flow. The general flow structure of the elliptic cylinder is similar to previous results for a circular cylinder submerged near to a free surface. However, the width of the wake and the angle of downward deflection of the shear layer developed from the lower surface of the elliptic cylinder are smaller tan those for a circular cylinder.

  • PDF

PIV measurements of near wake behind a sinusoidal cylinder

  • Zhang W.;Daichin Daichin;Lee S. J.
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.59-62
    • /
    • 2003
  • The near wake behind a sinusoidal cylinder at Re=5200 has been investigated using DPIV system. The velocity fields, streamlines and vorticity contours of the mean flow were compared at the nodal, saddle and middle planes with those of a right circular cylinder. For the sinusoidal cylinder, the vortex core moves downstream and the vortex formation region is expanded in streamwise direction while suppressed in transverse direction at the nodal plane. At the saddle and the middle plane the vortex spread in both streamwise and transverse directions, forming the maximum vortex region at the saddle plane.

  • PDF

Visualization of Turbulent Flow around a Sphere (구 주위 난류유동에 관한 가시화 연구)

  • Jang, Young-Il;Lee, Sang-Joon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.401-402
    • /
    • 2006
  • The turbulent flow around a sphere was investigated using two experimental techniques: smoke-wire flow visualization in wind tunnel at Re=5300, 11000 and PIV measurements in a circulating water channel. The smoke-wire visualization shows flow separation points near an azimuthal angle of $90^{\circ}$, recirculating flow, transition from laminar to turbulent shear layer, evolving vortex roll-up and fully turbulent eddies in the sphere wake. The mean velocity field measured using a PIV technique in x-y center plane demonstrates the detailed near-wake structure such as nearly symmetric recirculation region, two toroidal vortices, laminar separation, transition and turbulent eddies. The PIV measurements of turbulent wake in y-z planes show that a recirculating vortex pair dominates the near-wake region.

  • PDF

Characteristics of Near Wake Behind a Circular Cylinder with Serrated Fins (III) - Mechanism of Velocity Recovery - (톱니형 휜이 부착된 원주의 근접후류특성 연구 (III) - 속도회복 메카니즘에 관하여 -)

  • Ryu, Byong-Nam;Kim, Kyung-Chun;Boo, Jung-Sook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.3
    • /
    • pp.347-356
    • /
    • 2003
  • The characteristics of near wakes of circular cylinders with serrated fins are investigated experimentally using a hot-wire anemometer for various freestream velocities. Near wake structures of the fin tubes are observed using a phase average technique. With increasing fin height and decreasing fin pitch. oscillation of streamwise velocity increases. It file oscillation of lateral velocity decreases. The time averaged V-component velocity distribution of the finned tube is contrary to that of the circular cylinder due to the different strength of entrainment flow. This strength is affected by the distance of (equation omitted) = 1.0 contour lines. (equation omitted) = 1.0 contour line approaches to the wake center line when the fin density is increased. When the distance between (equation omitted) = 1.0 contour lines comes close the shear force should be increased and the flow toward the wake center line can be more strengthened because of the shear force. Factors related to the velocity recovery in the near wake of the finned tube are attributed to tile turbulent intensity, the boundary layer thickness. the position and strength of entrainment process.

Characteristics of Two-Dimensional Turbulent Wake Flow behind a Circular Cylinder (圓柱 뒤의 2 次元 後流 流動 特性)

  • 부정숙;윤순현;이종춘;강창수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.5
    • /
    • pp.555-563
    • /
    • 1985
  • Two-dimensional turbulent wake flow behind a circular cylinder is investigated experimentally by suing linearized constant temperature hot wire anemometer. Turbulent fluctuations and mean velocity defects are measured in the rage of 5 dia.- 500 dia. downstream from the cylinder and for the Reynolds numbers of 2000-4000. Results with statistical treatment and digital data processing techniques are as follows: (1) The transition region from near wake to far wake is 30 dia. - 50 dia. downstream from the cylinder. (2) In the near wake, it is found that strong periodic ( f=845Hz) coherent structure exists. (3) It shows that the inertial subrange is 180Hz-2000Hz in self preservation region.

Three Component Velocity Field Measurements of Turbulent Wake behind a Marine Propeller Using a Stereoscopic PIV Technique (Stereoscopic PIV 기법을 이용한 선박용 프로펠러 후류의 3차원 속도장 측정)

  • Lee, Sang-Joon;Paik, Nu-Geun;Yoon, Jong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.12
    • /
    • pp.1716-1723
    • /
    • 2003
  • A stereoscopic PIV(Particle Image Velocimetry) technique was employed to measure the 3 dimensional flow structure of turbulent wake behind a marine propeller with 5 blades. The out-of-plane velocity component was determined using two CCD cameras with the angular displacement configuration. Four hundred instantaneous velocity fields were measured for each of four different blade phases and ensemble averaged to investigate the spatial evolution of the propeller wake in the near-wake region from the trailing edge to one propeller diameter(D) downstream. The phase-averaged velocity fields show the potential wake and the viscous wake developed along the blade surfaces. Tip vortices were generated periodically and the slipstream contraction occurs in the near-wake region. The out-of-plane velocity component and strain rate have large values at the locations of tip and trailing vortices. As the flow goes downstream, the turbulence intensity, the strength of tip vortices and the magnitude of out-of-plane velocity component at trailing vortices are decreased due to viscous dissipation, turbulence diffusion and blade-to-blade interaction.