• Title/Summary/Keyword: Near to Eye Display

Search Result 14, Processing Time 0.02 seconds

Research and Development Trends in Three-dimensional (3D) Displays (공간표시 디스플레이 연구 및 개발 동향)

  • Cho, S.M.;Hwang, C.S.;Choi, J.H.;Kim, Y.H.;Cheon, S.H.;Choi, K.H.;Kim, J.Y.;Yang, J.H.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.4
    • /
    • pp.65-80
    • /
    • 2020
  • In this article, we review the study trends of three-dimensional (3D) displays that can display stereoscopic images from the perspective of a display device. 3D display technology can be divided into light field, holographic, and volume displays. Light field display is a display that can reproduce the intensity and direction of light or 'ray' in each pixel. It can display stereoscopic images with less information than a holographic display and does not require coherence of the light source. Therefore, it is expected that it will be commercialized before the holographic display. Meanwhile, the holographic display creates a stereoscopic image by completely reproducing the wavefront of an image using diffraction in terms of wave characteristics of light. This technology is considered to be able to obtain the most complete stereoscopic image, and the digital holographic display using a spatial light modulator (SLM) is expected to be the ultimate stereoscopic display. However, the digital holographic display still experiences the problem of a narrow viewing angle due to the finite pixel pitch of the SLM. Therefore, various attempts have been made at solving this problem. Volumetric display is a technology that directly creates a stereoscopic image by forming a spatial pixel, which is known as a volumetric pixel, in a physical space, and has a significant advantage in that it can easily solve the problem of the viewing angle. This technology has already been tested for commercial purposes by several leading companies. In this paper, we will examine recent research trends regarding these 3D displays and near-eye display that is emerging as a significant application field of these technologies.

Image Analysis Module for AR-based Navigation Information Display (증강현실 기반의 항행정보 가시화를 위한 영상해석 모듈)

  • Lee, Jung-Min;Lee, Kyung-Ho;Kim, Dae-Seok
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.22-28
    • /
    • 2013
  • This paper suggests a navigation information display system that is based on augmented reality technology. A navigator always has to confirm the information from marine electronic navigation devices and then compare it with the view of targets outside the windows. This "head down" posture causes discomfort and sometimes near accidents such as collisions or missing objects, because he or she cannot keep an eye on the front view of the windows. Augmented reality can display both virtual and real information in a single display. Therefore, we attempted to adapt AR technology to assist navigators. To analyze the outside view of the bridge window, various computer image processing techniques are required because the sea surface has many noises that disturb computer image processing for object detection, such as waves, wakes, light reflection, and so on. In this study, we investigated an analysis module to extract navigational information from images that are captured by a CCTV camera, and we validated our prototype.

Computer Image Processing for AR Conceptional Display 3D Navigational Information (증강현실 개념의 항행정보 가시화를 위한 영상처리 기술)

  • Lee, Jung-Min;Lee, Kyung-Ho;Kim, Dae-Soek;Nam, Byeong-Wook
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2014.10a
    • /
    • pp.245-246
    • /
    • 2014
  • This paper suggests the navigation information display system which is based on augmented reality technology and especially focuses on image analysis technology. Navigator has to always confirm the information from marine electronic navigation devices and then they compare with the view of outside targets of the windows. During this 'head down' posture, they feel uncomfortable and sometimes it cause near-accidents such as collision or missing objects, because he or she cannot keep an eye on the front view of windows. Augmented reality can display both of information of virtual and real in a single display. Therefore we tried to adapt the AR technology to help navigators and have been studied and developed image pre-processing module as a previous research already. To analysis the outside view of the bridge window, we have extracted navigational information from the camera image by using image processing. This paper mainly describes about recognizing ship feature by haar-like feature and filtering region of interest area by AIS data, which are to improve accuracy of the image analysis.

  • PDF

Change of electroencephalograph during 3-dimensional image load (입체 TV 영상(3D) 주시시의 유발전위)

  • Cho, Am
    • Journal of the Ergonomics Society of Korea
    • /
    • v.9 no.2
    • /
    • pp.29-35
    • /
    • 1990
  • To investigate and analyze of the human brain-wave changes during 3-dimenslonal image load were expected to take not only an important basic information of 3-dimensional TV usage but also 3-dimensional image design. In this experiment, to analyze the difference of visual analyze handing system for which we present the 2- dimensional image having no parallex and 3-dimensional image by visual evoked potentials(VEP). 2-dimensional image and 3-dimensional image displayed on the screen through video. In the test, the time interval was one sec for presentation of stimulus considering united time of visual information of right eye and left eye during watching the 3-dimensional image also display time interval was 200 mesc for each stimulus image. Results are as follow, (1) N190 appears faster 16msec-20msec in the point of Fz, Cz, Pz, Oz when loaded 3D4 angle than 2D3 angle. (2) About of the P300, 3D4 angle(Otherwise, Oz point was reverse) and in the case of no equipment of liquid crystal shutter, there appeared PEAK near the P250. (3) There were 5% significant difference when the liquid crystal shutter was equiped and didn't, Therefore, this phenomenon show the possibility that Liquid crystal shutter influences on Visual Evoked Potentials.

  • PDF