• 제목/요약/키워드: Near surface mounted

검색결과 102건 처리시간 0.021초

대기경계층 내에 놓인 자유단 원주의 형상비가 후류유동에 미치는 영향에 관한 연구 (Effect of cylinder aspect ratio on wake structure behind a finite circular cylinder located in an atmospheric boundary layer)

  • 박철우;이상준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.247-252
    • /
    • 2001
  • The flow around free end of a finite circular cylinder(FC) embedded in an atmospheric boundary layer has been investigated experimentally. The experiments were carried out in a closed-return type subsonic wind tunnel with varying aspect ratio of the finite cylinder mounted vertically on a flat plate. The wake structures behind a 2-D cylinder and a finite cylinder located in a uniform flow were also measured for comparison. Reynolds number based on the cylinder diameter was about Re=20,000. A hot-wire anemometer was employed to measure the wake velocity and the mean pressure distributions on the cylinder surface were also measured. The flow past the FC free end shows a complicated three-dimensional wake structure and flow phenomenon is quite different from that of 2-D cylinder. The three-dimensional flow structure was attributed to the downwashing counter rotating vortices separated from the FC free end. As the FC aspect ratio decreases, the vortex shedding frequency is decreased and the vortex formation length is increased compared to that of 2-D cylinder. Due to the descending counter-rotating twin-vortex, in the region near the FC free end, regular vortex shedding from the cylinder is suppressed and the vortex formation region is hardly established. In the wake center region, the mean velocity for the FC located in atmospheric boundary layer has large velocity deficit, compared to that of uniform flow.

  • PDF

접착재 종류와 정착구 유무에 따른 탄소막대 매립보강 RC보의 휨 거동에 관한 실험적 연구 (Experimental Study on the Flexural Behaviour of CFRP-bar NSM R.C Beams depending on Adhesive and Anchorage)

  • 김성원;이형근;여환준;박성무
    • 한국공간구조학회논문집
    • /
    • 제14권4호
    • /
    • pp.73-80
    • /
    • 2014
  • For the last decade many bridges and buildings have experienced flexural strengthening with the fiber reinforced polymer(FRP) bonding system, demands for increasing heavy traffic loads and the changing of the code application. Of the many strengthening systems, NSM(near surface mounted) system with FRP has become attractive and popular way of strengthening for the existed RC structures and many studies and applications of this technique have significantly increased all over the world. Meanwhile, polymer mortar that contains much of the same ingredients as cement but includes the addition of certain polymer resins for enhancing desired physical properties, has been used as an alternative adhesive. This paper focuses on flexural behaviour of CFRP-bar NSM system with variables such as kinds of adhesive, anchorage, sectional aspect ratio. Based on the test results and test-to-predicted ratio, this paper provides researchers and practical engineers a fundamental knowledge and intuition.

Numerical investigations on the along-wind response of a vibrating fence under wind action

  • Fang, Fuh-Min;Ueng, Jin-Min;Chen, J.C.
    • Wind and Structures
    • /
    • 제5권2_3_4호
    • /
    • pp.329-336
    • /
    • 2002
  • The along-wind response of a surface-mounted elastic fence under the action of wind was investigated numerically. In the computations, two sets of equations, one for the simulation of the unsteady turbulent flow and the other for the calculation of the dynamic motion of the fence, were solved alternatively. The resulting time-series tip response of the fence as well as the flow fields were analyzed to examine the dynamic behaviors of the two. Results show that the flow is unsteady and is dominated by two frequencies: one relates to the shear layer vortices and the other one is subject to vortex shedding. The resulting unsteady wind load causes the fence to vibrate. The tip deflection of the fence is periodic and is symmetric to an equilibrium position, corresponding to the average load. Although the along-wind aerodynamic effect is not significant, the fluctuating quantities of the tip deflection, velocity and acceleration are enhanced as the fundamental frequency of the fence is near the vortex or shedding frequency of the flow due to the occurrence of resonance. In addition, when the fence is relatively soft, higher mode response can be excited, leading to significant increases of the variations of the tip velocity and acceleration.

단일 인버터로 두 대의 영구자석 동기전동기 병렬운전에 대한 공진특성해석 (The Resonance Characteristic Analysis for Speed Control of Parallel Connected Dual SPMSMs fed by a Single Inverter)

  • 윤철;권우현
    • 전기학회논문지
    • /
    • 제66권4호
    • /
    • pp.643-650
    • /
    • 2017
  • This pap4er analyzes resonance characteristics of a slave motor that is not controlled by load and parameter differences between Dual motors during parallel operation in middle-low speed. Dual SPMSMs(Surface mounted Permanent Magnet Synchronous Motor) connected in parallel to a single inverter controlled by the master and slave control in this paper. Based on the stability analysis of the SPMSM for a variation of torque angle, the 6th nonlinear state equation of the torque angle variation in the SIMM(Single Inverter Multi Motor) structure is derived according to a mathematical model for the dual motors. In general, an analysis of the 6th order nonlinear state equation is complex. Therefore, a resonance frequency generated from the slave motor is found from the characteristic equation of the 2nd order system obtained by linearization and model reduction near steady state operation point. Through simulations and experiments, it is confirmed that the stability analysis of the SPMSMs and state equation models are useful for the variation of the torque angle analyzed in this paper.

Experimental investigation on optimal shear strengthening of RC beams using NSM GFRP bars

  • Ramezanpour, M.;Morshed, R.;Eslami, A.
    • Structural Engineering and Mechanics
    • /
    • 제67권1호
    • /
    • pp.45-52
    • /
    • 2018
  • Several techniques have been developed for shear strengthening of reinforced concrete (RC) members by using fiber reinforced polymer (FRP) composites. However, debonding of FRP retrofits from concrete substrate still deemed as a challenging concern in their application which needs to be scrutinized in details. As a result, this paper reports on the results of an experimental investigation on shear strengthening of RC beams using near surface mounted (NSM) FRP reinforcing bars. The main objective of the experimentation was increasing the efficiency of shear retrofits by precluding/postponing the premature debonding failure. The experimental program was comprised of six shear deficient RC beams. The test parameters include the FRP rebar spacing, inclination angle, and groove shape. Also, an innovative modification was introduced to the conventional NSM technique and its efficiency was evaluated by experimental observation and measurement. The results testified the efficiency of glass FRP (GFRP) rebars in increasing the shear strength of the test specimens retrofitted using conventional NSM technique. However, debonding of FRP bars impeded exploiting all retrofitting advantages and induced a premature shear failure. On the contrary, application of the proposed modified NSM (MNSM) technique was not only capable of preventing the premature debonding of FRP bars, but also could replace the failure mode of specimen from the brittle shear to a ductile flexural failure which is more desirable.

원적외선 대역의 태양 직사광 해수면 반사신호 특성 연구 (A Study on the Characteristics of Sunglint in LongWave InfraRed Band)

  • 김경하
    • 한국군사과학기술학회지
    • /
    • 제21권3호
    • /
    • pp.306-314
    • /
    • 2018
  • In maritime environment, it is necessary to understand the characteristics of sunglint since it may degrade the target detection performance of the infrared sensor mounted weapons. In this paper, sunglint in LWIR band is modeled using the slope distribution of the sea surface, and is verified by comparing the radiance of a simulated result with that of the real world. According to the simulation, sunglint is critical when the solar zenith angle is over $60^{\circ}$. The peak radiance of sunglint grows as the solar zenith angle increases until it reaches $83^{\circ}$ and has a large difference depending on the solar zenith angle when the wind speed is small. Finally, seasonal and temporal characteristics of sunglint effects are analyzed. In summer, sunglint is dominant in the horizon near the solar azimuth right after sunrise and before sunset. However, in winter, the influence of sunglint lasts even during the daytime since the elevation of the sun is much lower than in summer.

Active Control of Flow Noise Sources in Turbulent Boundary Layer on a Flat-Plate Using Piezoelectric Bimorph Film

  • Song, Woo-Seog;Lee, Seung-Bae;Shin, Dong-Shin;Na, Yang
    • Journal of Mechanical Science and Technology
    • /
    • 제20권11호
    • /
    • pp.1993-2001
    • /
    • 2006
  • The piezoelectric bimorph film, which, as an actuator, can generate more effective displacement than the usual PVDF film, is used to control the turbulent boundary-layer flow. The change of wall pressures inside the turbulent boundary layer is observed by using the multi-channel microphone array flush-mounted on the surface when actuation at the non-dimensional frequency $f_b^+$:=0.008 and 0.028 is applied to the turbulent boundary layer. The wall pressure characteristics by the actuation to produce local displacement are more dominantly influenced by the size of the actuator module than the actuation frequency. The movement of large-scale turbulent structures to the upper layer is found to be the main mechanism of the reduction in the wall- pressure energy spectrum when the 700$700{\nu}/u_{\tau}$-long bimorph film is periodically actuated at the non- dimensional frequency $f_b^+$:=0.008 and 0.028. The biomorph actuator is triggered with the time delay for the active forcing at a single frequency when a 1/8' pressure-type, pin-holed microphone sensor detects the large-amplitude pressure event by the turbulent spot. The wall-pressure energy in the late-transitional boundary layer is partially reduced near the convection wavenumber by the open-loop control based on the large amplitude event.

Crack mapping in RC members using distributed coaxial cable crack sensors: modeling and application

  • Greene, Gary Jr.;Belarbi, Abdeldjelil;Chen, Genda
    • Smart Structures and Systems
    • /
    • 제1권4호
    • /
    • pp.385-404
    • /
    • 2005
  • The paper presents a model to calculate reinforcement strain using measured crack width in members under applied tension, flexure, and/or shear stress. Crack mapping using a new type of distributed coaxial cable sensors for health monitoring of large-scale civil engineering infrastructure was recently proposed and developed by the authors. This paper shows the results and performance of such sensors mounted on near surface of two flexural beams and a large scale reinforced concrete box girder that was subjected to cyclic combined shear and torsion. The main objectives of this health monitoring study was to correlate the sensor's response to strain in the member, and show that magnitude of the signal's reflection coefficient is related to increases in applied load, repeated cycles, cracking, and reinforcement yielding. The effect of multiple adjacent cracks, and signal loss was also investigated. The results shown in this paper are an important step in using the sensors for crack mapping and determining reinforcement strain for in-situ structures.

Investigation of interface response of reinforced concrete columns retrofitted with composites

  • Achillopoulou, Dimitra V.;Kiziridou, Alexandra N.;Papachatzakis, Georgios A.;Karabinis, Athanasios I.
    • Steel and Composite Structures
    • /
    • 제22권6호
    • /
    • pp.1337-1358
    • /
    • 2016
  • The current study focuses on the assessment and interface response of reinforced concrete elements with composite materials (carbon fiber reinforced polymers-CFRPs, glass fiber reinforced polymers-GFRPs, textile reinforced mortars-TRM's, near surface mounted bars-NSMs). A description of the transfer mechanisms from concrete elements to the strengthening materials is conducted through analytical models based on failure modes: plate end interfacial debonding and intermediate flexural crack induced interfacial debonding. A database of 55 in total reinforced concrete columns (scale 1:1) is assembled containing elements rehabilitated with various techniques (29 wrapped with CFRP's, 5 wrapped with GFRP's, 4 containing NSM and 4 strengthened with TRM). The failure modes are discussed together with the performance level of each technique as well as the efficiency level in terms of ductility and bearing/ bending capacity. The analytical models' results are in acceptable agreement with the experimental data and can predict the failure modes. Despite the heterogeneity of the elements contained in the aforementioned database the results are of high interest and point out the need to incorporate the analytical expressions in design codes in order to predict the failure mechanisms and the limit states of bearing capacities of each technique.

Side-NSM composite technique for flexural strengthening of RC beams

  • Hosen, Md. Akter;Jumaat, Mohd Zamin;Saiful Islam, A.B.M.;Salam, Md. Abdus;Kim, Hung Mo
    • Computers and Concrete
    • /
    • 제20권4호
    • /
    • pp.439-448
    • /
    • 2017
  • Reinforced concrete (RC) infrastructures often require strengthening due to error in design, degradation of materials properties after prolong utilization and increases load carrying capacity persuaded by new use of the structures. For this purpose, a newly proposed Side Near Surface Mounted (SNSM) composite technique was used for flexural strengthening of RC beam specimens. Analytical and non-linear finite element modeling (FEM) using ABAQUS were performed to predict the flexural performance of RC specimens strengthened with S-NSM using steel bars as a strengthening reinforcement. RC beams with various SNSM reinforcement ratios were tested for flexural performance using four-point bending under monotonic loading condition. Results showed significantly increase the yield and ultimate strengths up to 140% and 144% respectively and improved failure modes. The flexural response, such as failure load, mode of failure, yield load, ultimate load, deflection, strain, cracks characteristic and ductility of the beams were compared with those predicted results. The strengthened RC beam specimens showed good agreement of predicted flexural behavior with the experimental outcomes.