• Title/Summary/Keyword: Near infrared spectra

Search Result 361, Processing Time 0.026 seconds

Quantitative analysis by the CARNAC procedure

  • Davies, Anthony M.C.;Fearn, Tom
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1124-1124
    • /
    • 2001
  • CARNAC is a procedure for obtaining quantitative analysis of a sample by comparison of the NIR spectra of the unknown sample with a database of a large number of samples with NIR spectral and compositional data. The method depends on the compression of the NIR database followed by a modification of the compressed data which emphasizes the required analyte. The method identifies a few very similar samples and the value of the required analyte is calculated from a weighed average of the analyte values for the selected similar samples. The method was originally described at Chambersburg IDRC in 1986 and in the Proceedings of the FT Conference of 1987. This contribution will describe recent work on utilising new methods for both compression and modification.

  • PDF

EVALUATION OF NIRS FOR ASSESSING PHYSICAL AND CHEMICAL CHARACTERISTICS OF LINEN WEFT YARN

  • Sharma, Hss;Kernaghan, K.;Whiteside, L.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1091-1091
    • /
    • 2001
  • Previous reports have shown that Near Infrared Spectroscopy (NIRS) can be used to assess physical and chemical properties of flax fibre and fabric quality. Currently, spinners assess yarn quality mainly based on strength and regularity measurements. There two key characteristics are influenced by quality of raw fibres used, especially the degree of rotting and strength. The aim of this investigation was to evaluate the use of NIRS for assessing quality of weft grade yarn available on the commercial market. In order to develop the NIR calibrations, a range of samples representing poor, medium and good quality weft yarn samples was included in the calibration and validation sample sets. The samples were analysed for physical and chemical parameters including caustic weight loss, fibre fractions, lipid, ash and minerals. A detailed protocol for assessing yarn quality has been developed to maximize the accuracy of the reflectance spectra. The development of partial least squares regression models and validation of the calibration equations using blind samples will be presented and discussed.

  • PDF

Nondestructive Quantification of Intact Ambroxol Tablet using Near-infrared Spectroscopy (근적외분광분석법을 사용한 암브록솔 정제의 비파괴적 정량분석)

  • 임현량;우영아;김도형;김효진;강신정;최현철;최한곤
    • YAKHAK HOEJI
    • /
    • v.48 no.1
    • /
    • pp.60-64
    • /
    • 2004
  • Near-infrared (NIR) spectroscopy was used to determine rapidly and nondestructively the content of ambroxol in intact ambroxol tablets containing 30 mg (12.5% m/m nominal concentration) by collecting NIR spectra in range 1100-1750 nm. The laboratory-made samples had 10.3∼15.9% m/m nominal ambroxol concentration. The measurements were made by reflection using a fiber-optic probe and calibration was carried out by partial least square regression (PLSR) with autoscaling. Model validation was performed by randomly splitting the data set into calibration and validation data set (7 samples as a calibration data set and 5 samples as a validation data set). The developed NIR method gave results comparable to the known values of tablets in a laboratorial manufacturing Process, standard error of calibration (SEC) and standard error of prediction (SEP) being 0.49% and 0.49% m/m respectively. The method showed good accuracy and repeatability NIR spectroscopic determination in intact tablets allowed the potential use of real time monitoring for a running production process.

Determination of Water Content in Skin by using a FT Near Infrared Spectrometer

  • Suh Eun-Jung;Woo Young-Ah;Kim Hyo-Jin
    • Archives of Pharmacal Research
    • /
    • v.28 no.4
    • /
    • pp.458-462
    • /
    • 2005
  • The water content of skin was determined using a FT near infrared (NIR) spectrometer. NIR diffuse reflectance spectra were collected from hairless mouse, in vitro, and from human inner arm, in vivo. It was found that the variation of NIR absorbance band 1450 nm from OH vibration of water and 1940 nm from the combination involving OH stretching and OH deformation, depending on the absolute water content of separated hairless mouse skin, in vitro, using the FT NIR spectrometer. Partial least squares regression (PLSR) was applied to develop a calibration model. The PLS model showed good correlation. For practical use of the evaluation of human skin moisture, the PLS model for human skin moisture was developed in vivo on the basis of the relative water content of stratum corneum from the conventional capacitance method. The PLS model predicted human skin moisture with a standard errors of prediction (SEP) of 3.98 at 1130-1830 nm range. These studies showed the possibility of a rapid and nondestructive skin moisture measurement using FT NIR spectrometer.

Dissolution Test for Indomethacin by the Portable Near-Infrared(NIR) System

  • Kim, Do-Hyung;Lim, Hun-Rang;Chang, Soo-Hyun;Woo, Young-Ah;Kim, Hyo-Jin
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.399.3-399.3
    • /
    • 2002
  • Near-infrared (NIR) system was used to determine rapidly and simply indomethacin in buffer solution for a dissolution test for tablets and capsules. Indomethacin standards were prepared ranging from 10 to 50ppm using mixture of phosphate buffer(pH 7,2) and water(1:4), The near infrared(NIR) transmittance spectra of indomethacin standard solutions were collected by using a quartz cell in 1 mm and 2mm pathlength, Partial least-square regression (PLSR) was explored to develop calibration models over the spectral range 1100-1700nm. (omitted)

  • PDF

Near infrared spectroscopy for classification of apples using K-mean neural network algorism

  • Muramatsu, Masahiro;Takefuji, Yoshiyasu;Kawano, Sumio
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1131-1131
    • /
    • 2001
  • To develop a nondestructive quality evaluation technique of fruits, a K-mean algorism is applied to near infrared (NIR) spectroscopy of apples. The K-mean algorism is one of neural network partition methods and the goal is to partition the set of objects O into K disjoint clusters, where K is assumed to be known a priori. The algorism introduced by Macqueen draws an initial partition of the objects at random. It then computes the cluster centroids, assigns objects to the closest of them and iterates until a local minimum is obtained. The advantage of using neural network is that the spectra at the wavelengths having absorptions against chemical bonds including C-H and O-H types can be selected directly as input data. In conventional multiple regression approaches, the first wavelength is selected manually around the absorbance wavelengths as showing a high correlation coefficient between the NIR $2^{nd}$ derivative spectrum and Brix value with a single regression. After that, the second and following wavelengths are selected statistically as the calibration equation shows a high correlation. Therefore, the second and following wavelengths are selected not in a NIR spectroscopic way but in a statistical way. In this research, the spectra at the six wavelengths including 900, 904, 914, 990, 1000 and 1016nm are selected as input data for K-mean analysis. 904nm is selected because the wavelength shows the highest correlation coefficients and is regarded as the absorbance wavelength. The others are selected because they show relatively high correlation coefficients and are revealed as the absorbance wavelengths against the chemical structures by B. G. Osborne. The experiment was performed with two phases. In first phase, a reflectance was acquired using fiber optics. The reflectance was calculated by comparing near infrared energy reflected from a Teflon sphere as a standard reference, and the $2^{nd}$ derivative spectra were used for K-mean analysis. Samples are intact 67 apples which are called Fuji and cultivated in Aomori prefecture in Japan. In second phase, the Brix values were measured with a commercially available refractometer in order to estimate the result of K-mean approach. The result shows a partition of the spectral data sets of 67 samples into eight clusters, and the apples are classified into samples having high Brix value and low Brix value. Consequently, the K-mean analysis realized the classification of apples on the basis of the Brix values.

  • PDF

HIGH RESOLUTION NEAR-INFRARED SPECTRA OF NEARBY QUASAR, PG1426+015

  • Le, Huynh Anh Nguyen;Pak, Soo-Jong;Im, Myung-Shin;Ho, Luis C.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.51.1-51.1
    • /
    • 2012
  • We observed low-z quasar PG1426+015 (z=0.086), using the near-IR high resolution echelle spectrometer, IRCS, at the SUBARU 8.2 m telescope. Using an Adoptive Optics system, the full width at half maximum of the point spread function was about 0.3 arcsec, which can effectively separate the quasar spectra from the host galaxy spectra. We also maximize the total exposure time up to several hours per target, and develop data reduction methods to increase the signal-to-noise ratios. This poster presents the data reduction processes and sample spectra from the quasar and its host galaxy. These spectral lines will be used to study the physical mechanism of quasars, and the velocity dispersions of the stars in the bugle of the host galaxy.

  • PDF

Near-IR Spectral Features of Haze Particles in the Atmosphere of Titan

  • Kim, Sang Joon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.62.1-62.1
    • /
    • 2013
  • The Cassini/Visual Infrared Mapping Spectrometer (VIMS) observed the sun through the atmosphere of Titan, and provided vertically-resolved 63 spectra from 49 km to 987 km for the 1 - 5 micron range (Bellucci, 2008). Bellucci et al. (2009) analyzed selected spectral ranges where the band absorptions of $CH_4$ and CO are strong by constructing synthetic spectra including $CH_4$ and CO lines, but without including haze absorptions in their synthetic spectra. Kim et al. (2011) and Sim et al. (2013) were able to extract detailed spectral features of fundamental (Dv = 1) and overtone (Dv = 2) bands of the haze from the VIMS spectra by excluding the adjacent influences of strong $CH_4$ absorptions using a radiative transfer program, which includes effects of absorption and emission of lines of these molecules, and absorption and scattering of haze particles. In this presentation, we extend our detailed analyses to other remaining wavelengths in order to provide the spectral characteristics of the Titanian haze for the entire 1 - 5 micron range and to identify any additional haze spectral features and an unidentified feature near 4.3 microns reported by Bellucci et al. (2009).

  • PDF

DETECTION OF PHYSIOLOGICAL PROCESSES IN WHEAT BY NIR

  • Salgo, A.;Gergely, Sz.;Scholz, E.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1158-1158
    • /
    • 2001
  • Fast and dynamic biochemical, enzymatic and morphological changes occur during the so-called generative development and during the vegetative processes in seeds. The most characteristic biochemical and compositional changes of this period are the formation and decline of storage components or their precursors, the change of their degree in polymerization and an extensive change in water content. The aim of the present study was to detect the maturation processes in seed nondestructively and to verify the applicability of near infrared spectroscopic methods in the measurement of physiological, chemical and biochemical changes in wheat seed. The amount and variation of different water “species” has been changed intensively during maturation. Characteristic changes of three water absorption bands (1920, 1420 and 1150 nm) during maturation were analysed. It was concluded that the free/bound transition of water molecules could be followed sensitively in different region of NIR spectra. Kinetic changes of carbohydrate reserves were characteristic during maturation. An intensive formation and decline of carbohydrate reserves were observed during early stage of maturation (0 -13 days, high energy demand). An accelerated formation of storage carbohydrates (starch) was detected in the second phase of maturation. Five characteristic absorption bands were analysed which were sensitive indicators the changes of carbohydrates occurred during maturation. Precursors of protein synthesis and the synthesis of reserve proteins and their kinetic changes during maturation were followed from NIR spectra qualitative and qualitatively. Dynamic formation of amino acids and the changes of N forms were detected by spectroscopic, chromatographic and by capillary electrophoresis methods. Calibration equations were developed and validated in order to measure the optimal maturation time protein and moisture content of developing wheat seeds. The spectroscopic methods are offering chance and measurement potential in order to detect fine details of physiological processes. The spectra have many hidden details, which can help to understand the biochemical background of processes.

  • PDF

The Prediction of Blending Ratio of Cut Tobacco, Expanded Stem, and Expanded Cut Tobacco in Cigarettes using Near Infrared Spectroscopy (근적외분광법을 이용한 권련 중 일반각초, 팽화주맥 및 팽화각초 배합비 분석)

  • 김용옥;정한주;김기환
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.22 no.1
    • /
    • pp.76-83
    • /
    • 2000
  • This study was carried out to predict blending ratio of cut tobacco(CT), expanded stem(ES), and expanded cut tobacco(ECT) in cigarettes. CT, ES, and ECT samples from A brand were, ground and blended with reference to A blending ratio, and scanned by near infrared spectroscopy(NIRSystem Co., Model 6500). Calibration equations were developed and then determined blending ratio by NIRS. The standard error of calibration(SEC) and performance(SEP) of C factory samples between NIRS and known blending ratio were 0.97%, 1.93% for CT, 0.50%, 1.12 % for ES and 0.68%, 1.10% for ECT, respectively. The SEP of CT, ES and ECT of Band D factory samples determined by C factory calibration equation were more inaccurate than those of C factory samples determined by C factory calibration equations. These results were caused by the difference of CT, ES and ECT spectra followed by each factory. The SEP of CT, ES and ECT of Band D factories determined by calibration equations derived from each factory samples were more accurate than those of determined by calibration equation derived from C factory samples. Each factory SEP of CT, ES and ECT determined by calibration equation derived from all calibration samples(B+C+D factory) was similar to that determined by calibration equation derived from each factory samples. To improve the analytical inaccuracy caused by spectra difference, we need to apply a specific calibration equation for each factory sample. Data in development of specific calibrations between sample and NIRS spectra might supply a method for rapid determination of blending ratio of CT, ES, and ECT.

  • PDF