• Title/Summary/Keyword: Near infrared spectra

Search Result 361, Processing Time 0.025 seconds

Transferring Calibrations Between on Farm Whole Grain NIR Analysers

  • Clancy, Phillip J.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1210-1210
    • /
    • 2001
  • On farm analysis of protein, moisture and oil in cereals and oil seeds is quickly being adopted by Australian farmers. The benefits of being able to measure protein and oil in grains and oil seeds are several : $\square$ Optimize crop payments $\square$ Monitor effects of fertilization $\square$ Blend on farm to meet market requirements $\square$ Off farm marketing - sell crop with load by load analysis However farmers are not NIR spectroscopists and the process of calibrating instruments has to the duty of the supplier. With the potential number of On Farm analyser being in the thousands, then the task of calibrating each instrument would be impossible, let alone the problems encountered with updating calibrations from season to season. As such, NIR technology Australia has developed a mechanism for \ulcorner\ulcorner\ulcorner their range of Cropscan 2000G NIR analysers so that a single calibration can be transferred from the master instrument to every slave instrument. Whole grain analysis has been developed over the last 10 years using Near Infrared Transmission through a sample of grain with a pathlength varying from 5-30mm. A continuous spectrum from 800-1100nm is the optimal wavelength coverage fro these applications and a grating based spectrophotometer has proven to provide the best means of producing this spectrum. The most important aspect of standardizing NIB instruments is to duplicate the spectral information. The task is to align spectrum from the slave instruments to the master instrument in terms of wavelength positioning and then to adjust the spectral response at each wavelength in order that the slave instruments mimic the master instrument. The Cropscan 2000G and 2000B Whole Grain Analyser use flat field spectrographs to produce a spectrum from 720-1100nm and a silicon photodiode array detector to collect the spectrum at approximately 10nm intervals. The concave holographic gratings used in the flat field spectrographs are produced by a process of photo lithography. As such each grating is an exact replica of the original. To align wavelengths in these instruments, NIR wheat sample scanned on the master and the slave instruments provides three check points in the spectrum to make a more exact alignment. Once the wavelengths are matched then many samples of wheat, approximately 10, exhibiting absorbances from 2 to 4.5 Abu, are scanned on the master and then on each slave. Using a simple linear regression technique, a slope and bias adjustment is made for each pixel of the detector. This process corrects the spectral response at each wavelength so that the slave instruments produce the same spectra as the master instrument. It is important to use as broad a range of absorbances in the samples so that a good slope and bias estimate can be calculated. These Slope and Bias (S'||'&'||'B) factors are then downloaded into the slave instruments. Calibrations developed on the master instrument can then be downloaded onto the slave instruments and perform similarly to the master instrument. The data shown in this paper illustrates the process of calculating these S'||'&'||'B factors and the transfer of calibrations for wheat, barley and sorghum between several instruments.

  • PDF

Estimating soils properties using NIRS to assess amendments in intensive horticultural production

  • Pena, Francisco;Gallardo, Natalia;Campillo, Carmen Del;Garrido, Ana;Cabanas, Victor Fernandez;Delgado, Antonio
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1615-1615
    • /
    • 2001
  • During the past ten years, Near Infrared Spectroscopy has been successfully applied to the analysis of a great variety of agriculture products. Previous works (Morra et al., 1991; Salgo et al., 1998) have shown the potential of this technology for soil analysis, estimating different parameters just with one single scan. The main advantages of NIR applications in soils are the speed of response, allowing the increase of the number of samples analysed to define a particular soil, and the instantaneous elaboration of recommendations for fertilization and soil amendment. Another advantage is to avoid the use of chemical reagents at all, being an environmentally safe technique. In this paper, we have studied a set of 129 soil samples selected from representative glasshouse soils from Southern Spain. The samples were dried, milled, and sieved to pass a 2 mm sieve and then analysed for organic carbon, total nitrogen, inorganic nitrogen (nitrate ammonium), hygroscopic humidity, pH and electrical conductivity in the 1:1 extract. NIR spectra of all samples were obtained in reflectance mode using a Foss NIR Systems 6500 spectrophotometer equipped with a spinning module. Calibration equations were developed for seven analytical parameters (ph, Total nitrogen, organic nitrogen, organic carbon, C/N ratio and Electric Conductivity). Preliminary results show good correlation coefficients and standard errors of cross validation in equations obtained for Organic Carbon, Organic Nitrogen, Total Nitrogen and C/N ratio. Calibrations for nitrates and nitrites, ammonia and electric conductivity were not acceptable. Calibration obtained for pH had an acceptable SECV, but the determination coefficient was found very poor probably due to the reduced range in reference values. Since the estimation of Organic Carbon and C/N ratio are acceptable NIIRS could be used as a fast method to assess the necessity of organic amendments in soils from Mediterranean regions where the low level of organic matter in soils constitutes an important agronomic problem. Furthermore, the possibility of a single and fast estimation of Total Nitrogen (tedious determination by modifications of the Kjeldahl procedure) could provide and interesting data to use in the estimation of nitrogen fertilizer rates by means of nitrogen balances.

  • PDF

Data reduction package for the Immersion Grating Infrared Spectrograph (IGRINS)

  • Sim, Chae Kyung;Le, Huynh Anh Nguyen;Pak, Soojong;Lee, Hye-In;Kang, Wonseok;Chun, Moo-Young;Jeong, Ueejeong;Yuk, In-Soo;Kim, Kang-Min;Park, Chan;Jaffe, Daniel T.;Pavel, Michael
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.84.1-84.1
    • /
    • 2013
  • We present a python-based data reduction pipeline for the Immersion GRating INfrared Spectrograph (IGRINS). IGRINS covers the complete H- and K-bands in a single exposure with a spectral resolving power of greater than 40,000. IGRINS is designed to be compatible with telescopes of diameters ranging from 2.7-m (the Harlan J. Smith telescope at McDonald Observatory) to 8-10m. Commissioning and initial operation will be on the 2.7-m telescope from late 2013. The pipeline package is a part of the IGRINS software and designed to be compatible with other package that maneuvers the spectrograph during the observation. This package provides high-quality spectra with minimal human intervention and the processes of order extraction, distortion correction, and wavelength calibration can be automatically carried out using the predefined functions (e.g. echellogram mapping and 2D transform). Since the IGRINS is a prototype of the Giant Magellan Telescope Near-Infrared Spectrometer (GMTNIRS), this pipeline will be extended to the GMTNIRS software.

  • PDF

COMPARISON OF LINEAR AND NON-LINEAR NIR CALIBRATION METHODS USING LARGE FORAGE DATABASES

  • Berzaghi, Paolo;Flinn, Peter C.;Dardenne, Pierre;Lagerholm, Martin;Shenk, John S.;Westerhaus, Mark O.;Cowe, Ian A.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1141-1141
    • /
    • 2001
  • The aim of the study was to evaluate the performance of 3 calibration methods, modified partial least squares (MPLS), local PLS (LOCAL) and artificial neural network (ANN) on the prediction of chemical composition of forages, using a large NIR database. The study used forage samples (n=25,977) from Australia, Europe (Belgium, Germany, Italy and Sweden) and North America (Canada and U.S.A) with information relative to moisture, crude protein and neutral detergent fibre content. The spectra of the samples were collected with 10 different Foss NIR Systems instruments, which were either standardized or not standardized to one master instrument. The spectra were trimmed to a wavelength range between 1100 and 2498 nm. Two data sets, one standardized (IVAL) and the other not standardized (SVAL) were used as independent validation sets, but 10% of both sets were omitted and kept for later expansion of the calibration database. The remaining samples were combined into one database (n=21,696), which was split into 75% calibration (CALBASE) and 25% validation (VALBASE). The chemical components in the 3 validation data sets were predicted with each model derived from CALBASE using the calibration database before and after it was expanded with 10% of the samples from IVAL and SVAL data sets. Calibration performance was evaluated using standard error of prediction corrected for bias (SEP(C)), bias, slope and R2. None of the models appeared to be consistently better across all validation sets. VALBASE was predicted well by all models, with smaller SEP(C) and bias values than for IVAL and SVAL. This was not surprising as VALBASE was selected from the calibration database and it had a sample population similar to CALBASE, whereas IVAL and SVAL were completely independent validation sets. In most cases, Local and ANN models, but not modified PLS, showed considerable improvement in the prediction of IVAL and SVAL after the calibration database had been expanded with the 10% samples of IVAL and SVAL reserved for calibration expansion. The effects of sample processing, instrument standardization and differences in reference procedure were partially confounded in the validation sets, so it was not possible to determine which factors were most important. Further work on the development of large databases must address the problems of standardization of instruments, harmonization and standardization of laboratory procedures and even more importantly, the definition of the database population.

  • PDF

Prediction of Chemical Composition and Fermentation Parameters in Forage Sorghum and Sudangrass Silage using Near Infrared Spectroscopy

  • Park, Hyung-Soo;Lee, Sang-Hoon;Choi, Ki-Choon;Kim, Ji-Hye;So, Min-Jeong;Kim, Hyeon-Seop
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.35 no.3
    • /
    • pp.257-263
    • /
    • 2015
  • This study was conducted to assess the potential of using NIRS to accurately determine the chemical composition and fermentation parameters in fresh coarse sorghum and sudangrass silage. Near Infrared Spectroscopy (NIRS) has been increasingly used as a rapid and accurate method to analyze the quality of cereals and dried animal forage. However, silage analysis by NIRS has a limitation in analyzing dried and ground samples in farm-scale applications because the fermentative products are lost during the drying process. Fresh coarse silage samples were scanned at 1 nm intervals over the wavelength range of 680~2500 nm, and the optical data were obtained as log 1/Reflectance (log 1/R). The spectral data were regressed, using partial least squares (PLS) multivariate analysis in conjunction with first and second order derivatization, with a scatter correction procedure (standard normal variate and detrend (SNV&D)) to reduce the effect of extraneous noise. The optimum calibrations were selected on the basis of minimizing the standard error of cross validation (SECV). The results of this study showed that NIRS predicted the chemical constituents with a high degree of accuracy (i.e. the correlation coefficient of cross validation ($R^2{_{cv}}$) ranged from 0.86~0.96), except for crude ash which had an $R^2{_{cv}}$ of 0.68. Comparison of the mathematical treatments for raw spectra showed that the second-order derivatization procedure produced the best result for all the treatments, except for neutral detergent fiber (NDF). The best mathematical treatment for moisture, acid detergent fiber (ADF), crude protein (CP) and pH was 2,16,16 respectively while the best mathematical treatment for crude ash, lactic acid and total acid was 2,8,8 respectively. The calibrations of fermentation products produced poorer calibrations (RPD < 2.5) with acetic and butyric acid. The pH, lactic acid and total acids were predicted with considerable accuracy at $R^2{_{cv}}$ 0.72~0.77. This study indicated that NIRS calibrations based on fresh coarse sorghum and sudangrass silage spectra have the capability of assessing the forage quality control

Discrimination of Internally Browned Apples Utilizing Near-Infrared Non-Destructive Fruit Sorting System (근적외선 비파괴 과일 선별 시스템을 활용한 내부 갈변 사과의 판별)

  • Kim, Bal Geum;Lim, Jong Guk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.208-213
    • /
    • 2021
  • There is a lack of studies comparing the internal quality of fruit with its external quality. However, issues of internal quality of fruit such as internal browning are important. We propose a method of classifying normal apples and internally browned apples using a near-infrared (NIR) non-destructive system. Specifically, we found the optimal wavelength and characteristics of the spectra for determining the internal browning of Fuji apples. The NIR spectra of apples were obtained in the wavelength range of 470-1150 nm. A group of normal apples and a group of internally browned apples were identified using principal component analysis (PCA), and a partial least squares regression (PLSR) analysis was performed to develop and evaluate the discriminant model. The PCA analysis revealed a clear difference between the normal and internally browned apples. From the PLSR, the correlation coefficient of the predictive model without pretreatment was determined to be 0.902 with an RMSE value of 0.157. The correlation coefficient of the predictive model with pretreatment was 0.906 with an RMSE value of 0.154. The results show that this model is suitable for classifying normal and internally browned apples and that it can be applied for the sorting and evaluation of agricultural products for internal and external defects.

Absorption Spectra and Functional Group Contents of Peat and Humus Fractions in Korea (한국산(韓國産) 이탄(泥炭)과 토양부식물(土壤腐植物) 획분(劃分)의 흡수(吸收)스펙트럼 및 관능기(官能基)의 함량(含量))

  • Lim, Sun-Uk;Moon, Moo-Sang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.16 no.4
    • /
    • pp.347-352
    • /
    • 1983
  • To characterize humus fractions in soil, visible, ultraviolet and infrared absorption spectra of humic acids in alkaline solutions and hymatomelanic acids in ethanol solutions extracted by Stevenson's method from paddy rice soils, peats, and volcanic ash soils were analyzed. The spectra patterns of both fractions in visible and ultraviolet ranges did not have any peak and the absorbance decreased as the wavelength increased. Visible and ultraviolet spectra of the solutions from all the peats, volcanic ash soils and paddy rice soil were very similar each other but absorbances were slowly declined in the order of volcanic ash soils, peats and mineral paddy soils. The infrared spectra of the two solutions appeared in a typical pattern, showing a few broad peaks. The main absorption bands were in the regions of $3400cm^{-1}$ (hydrogen bonded OH), near $2900cm^{-1}$ (aliphatic CH), $1720cm^{-1}$ (C=O of COOH, C=O of carbonyl), $1625cm^{-1}$ (aromatic C-C conjugated with C=O and/or COO-), $1400-1450cm^{-1}$ (CH stretch), $1200-1250cm^{-1}$ (CaO stretch of phenolic OH or OH-deformation of COOH) and $1050cm^{-1}$. The hymatomelanic acid fractions, however, had spectra that were characterized especially by very distinct absorption at $2900cm^{-1}$ and $1720cm^{-1}$, for aliphatic CH and carbonyl stretching vibration respectively in addition to the weaker bands for COO- or aromatic CH vibration at $1625cm^{-1}$, as compared to humic acid. No differences were noted in the general patterns of the spectograms of both fractions extracted. Analyses of the functional groups revealed little differences between peats and paddy soils, although total acidity and the content of carboxyl groups were decreased in the order of volcanic ash soils, peats and mineral paddy soils.

  • PDF

Sol-gel Derived-highly Transparent c-axis Oriented ZnO Thin Films (졸-겔법에 의한 c-축 배향성을 가진 고투과율 ZnO 박막의 제조)

  • Lee, Young-Hwan;Jeong, Ju-Hyun;Jeon, Young-Sun;Hwang, Kyu-Seog
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.13 no.1
    • /
    • pp.71-76
    • /
    • 2008
  • Purpose: A simple and efficient method to prepare nanocrystalline ZnO thin film with pure strong UV emission on soda-lime-silica glass substrates by low-temperature annealing was improved. Methods: Crystal structural, surface morphological, and optical characteristics of nanocrystalline ZnO thin films deposited on soda-lime-silica glass substrates by prefiring final annealing process at 300$^{\circ}C$ were investigated by using X-ray diffraction analysis, field emission-scanning electron microscope, scanning probe microscope, ultraviolet-visible-near infrared spectrophotometer, and photoluminescence. Results: Highly c-axis-oriented ZnO films were obtained by prefiring at 300$^{\circ}C$. A high transmittance in the visible spectra range and clear absorption edge in the ultra violet range of the film was observed. The PL spectrum of ZnO thin film with a deep near band edge emission was observed while the defect-related broad green emission was nearly quenched. Conclusions: Our work will be possibly adopted to cheaply and easily fabricate ZnO-based optoelectronic devices at low temperature, below 300$^{\circ}C$, in the future.

  • PDF

DISEASE DIAGNOSED AND DESCRIBED BY NIRS

  • Tsenkova, Roumiana N.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1031-1031
    • /
    • 2001
  • The mammary gland is made up of remarkably sensitive tissue, which has the capability of producing a large volume of secretion, milk, under normal or healthy conditions. When bacteria enter the gland and establish an infection (mastitis), inflammation is initiated accompanied by an influx of white cells from the blood stream, by altered secretory function, and changes in the volume and composition of secretion. Cell numbers in milk are closely associated with inflammation and udder health. These somatic cell counts (SCC) are accepted as the international standard measurement of milk quality in dairy and for mastitis diagnosis. NIR Spectra of unhomogenized composite milk samples from 14 cows (healthy and mastitic), 7days after parturition and during the next 30 days of lactation were measured. Different multivariate analysis techniques were used to diagnose the disease at very early stage and determine how the spectral properties of milk vary with its composition and animal health. PLS model for prediction of somatic cell count (SCC) based on NIR milk spectra was made. The best accuracy of determination for the 1100-2500nm range was found using smoothed absorbance data and 10 PLS factors. The standard error of prediction for independent validation set of samples was 0.382, correlation coefficient 0.854 and the variation coefficient 7.63%. It has been found that SCC determination by NIR milk spectra was indirect and based on the related changes in milk composition. From the spectral changes, we learned that when mastitis occurred, the most significant factors that simultaneously influenced milk spectra were alteration of milk proteins and changes in ionic concentration of milk. It was consistent with the results we obtained further when applied 2DCOS. Two-dimensional correlation analysis of NIR milk spectra was done to assess the changes in milk composition, which occur when somatic cell count (SCC) levels vary. The synchronous correlation map revealed that when SCC increases, protein levels increase while water and lactose levels decrease. Results from the analysis of the asynchronous plot indicated that changes in water and fat absorptions occur before other milk components. In addition, the technique was used to assess the changes in milk during a period when SCC levels do not vary appreciably. Results indicated that milk components are in equilibrium and no appreciable change in a given component was seen with respect to another. This was found in both healthy and mastitic animals. However, milk components were found to vary with SCC content regardless of the range considered. This important finding demonstrates that 2-D correlation analysis may be used to track even subtle changes in milk composition in individual cows. To find out the right threshold for SCC when used for mastitis diagnosis at cow level, classification of milk samples was performed using soft independent modeling of class analogy (SIMCA) and different spectral data pretreatment. Two levels of SCC - 200 000 cells/$m\ell$ and 300 000 cells/$m\ell$, respectively, were set up and compared as thresholds to discriminate between healthy and mastitic cows. The best detection accuracy was found with 200 000 cells/$m\ell$ as threshold for mastitis and smoothed absorbance data: - 98% of the milk samples in the calibration set and 87% of the samples in the independent test set were correctly classified. When the spectral information was studied it was found that the successful mastitis diagnosis was based on reviling the spectral changes related to the corresponding changes in milk composition. NIRS combined with different ways of spectral data ruining can provide faster and nondestructive alternative to current methods for mastitis diagnosis and a new inside into disease understanding at molecular level.

  • PDF

Estimation and Mapping of Soil Organic Matter using Visible-Near Infrared Spectroscopy (분광학을 이용한 토양 유기물 추정 및 분포도 작성)

  • Choe, Eun-Young;Hong, Suk-Young;Kim, Yi-Hyun;Zhang, Yong-Seon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.968-974
    • /
    • 2010
  • We assessed the feasibility of discrete wavelet transform (DWT) applied for the spectral processing to enhance the estimation performance quality of soil organic matters using visible-near infrared spectra and mapped their distribution via block Kriging model. Continuum-removal and $1^{st}$ derivative transform as well as Haar and Daubechies DWT were used to enhance spectral variation in terms of soil organic matter contents and those spectra were put into the PLSR (Partial Least Squares Regression) model. Estimation results using raw reflectance and transformed spectra showed similar quality with $R^2$ > 0.6 and RPD> 1.5. These values mean the approximation prediction on soil organic matter contents. The poor performance of estimation using DWT spectra might be caused by coarser approximation of DWT which not enough to express spectral variation based on soil organic matter contents. The distribution maps of soil organic matter were drawn via a spatial information model, Kriging. Organic contents of soil samples made Gaussian distribution centered at around 20 g $kg^{-1}$ and the values in the map were distributed with similar patterns. The estimated organic matter contents had similar distribution to the measured values even though some parts of estimated value map showed slightly higher. If the estimation quality is improved more, estimation model and mapping using spectroscopy may be applied in global soil mapping, soil classification, and remote sensing data analysis as a rapid and cost-effective method.