• Title/Summary/Keyword: Near Infrared Reflectance Spectroscopy

Search Result 214, Processing Time 0.025 seconds

SOURCES OF NON-LINEARITY IN NIR SPECTRA OF SCATTERING SAMPLES

  • Dahm, Donald J.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1011-1011
    • /
    • 2001
  • In general, NIR reflectance spectra (whether recorded using log(1/R) or the Kubelka-Munk function) are not linear functions of the concentration of the absorbers which we are measuring. There are several causes for this non-linearity, the most commonly cited one being front surface reflection. However, non-linearity also arises from the effects of particle size, sample thickness, void fraction, and experimental arrangement. In this talk, we will attempt to isolate the effects of the various causes, and show the effects of each, using both theoretical calculations and actual data. The listener should then be able to assess where we stand in our quest to produce “linear” data through pre-processing and/or alternate collection schemes.

  • PDF

Rapid Prediction of Amylose Content of Polished Rice by Fourier Transform Near-Infrared Spectroscopy

  • Lee, Jin-Cheol;Yoon, Yeon-Hee;Kim, Sun-Min;Pyo, Byong-Sik;Hsieh, Fu-Hung;Kim, Hak-Jin;Eun, Jong-Bang
    • Food Science and Biotechnology
    • /
    • v.16 no.3
    • /
    • pp.477-481
    • /
    • 2007
  • Fourier transform near-infrared (FT-NIR) spectroscopy and partial least squares (PLS) regression were used to predict the amylose content of polished rice. Spectral reflectance data in a wavelength range of 1,000 to 2,500 nm were obtained with a commercial spectrophotometer for 60 different varieties of Korean rice. For a comparison of this spectroscopic method to a standard chemical analysis, the amylose contents of the tested rice samples were determined by the iodine-blue colorimetric method. The highest correlation for the rice amylose ($R^2=0.94$, standard error of prediction=0.20% amylose content) was obtained when using the FT-NIR spectrum data pre-treated with normalization, the first derivative, smoothing, and scattering correction.

SELECTION OF VISIBLE/NIR WAVELENGTHS FOR CHARACTERIZING FECAL AND INGESTA CONTAMINATION OF POULTRY CARCASSES

  • William R.Windham;Park, Bosoon;Kurt C.Lawarece;Douglas P.Smith
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.3105-3105
    • /
    • 2001
  • Ingests and fecal contamination on a poultry carcass is a food safety hazard due to potential microbiological contamination. A visible/near-infrared (NIR) spectrometer was used to discriminate among pure ingesta and fecal material, breast skin contaminated with ingesta or fecal material and uncontaminated breast skin. Birds were fed isocaloric diets formulated with either maize, mile, or wheat and soybean meal for protein requirements. Following completion of the feeding period (14 days), the birds were humanely processed and eviscerated to obtain ingests from the crop or proventriculus and feces from the duodenum, ceca, and colon portion of the digestive tract. Pure feces and ingesta, breast skin, and contaminated breast skin were scanned from 400 to 2500 nm and analyzed from 400 to 900 nm. Principal component analysis (PCA) of reflectance spectra was used to discriminate between contaminates and uncontaminated breast skin. Results indicate that visible (400 to 760 nm) and NIR 760-900 nm spectra can detect contaminates. From PCA analysis, key wavelengths were identified for discrimination of uncontaminated skin from contaminates based the evaluation of loadings weights.

  • PDF

Effect of Grinding on Color and Chemical Composition of Pork Sausages by Near Infrared Spectrophotometric Analyses

  • Kang, J.O.;Park, J.Y.;Choy, Y.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.6
    • /
    • pp.858-861
    • /
    • 2001
  • Near Infrared spectroscopy was applied to the samples of processed pork to see the effect of grinding on chemical components analyses. Data from conventional chemical analyses of moisture, fat, protein, NaCl were put into calibration model by NIR of reflectance mode. The other properties observed were pH and color parameters ($L^*,\;a^*,\;b^*$). Spectral ranges of 400~2500 nm and 400~1100 nm were compared for color parameters. Spectral ranges of 400~2500 nm and 1100~2500 nm were compared for chemical components and pH. Different spectral ranges caused little changes in the coefficients of determination or standard errors. $R^{2,}s$ of calibration models for color parameters were in the range of 0.97 to 1.00. $R^{2,}s$ of calibration models of intact sausages for moisture, protein, fat, NaCl and pH were 0.98, 0.89, 0.95, 0.73 and 0.77, respectively using spectra at 1100~2500 nm. $R^{2,}s$ of calibration models of ground sausages for moisture, protein, fat, NaCl and pH were 0.97, 0.91, 0.97, 0.42 and 0.56, respectively using spectra at 1100~2500 nm.

Application of Near Infrared Spectroscopy for Nondestructive Evaluation of Color Degree of Apple Fruit (사과 착색도의 비파괴측정을 위한 근적외분광분석법의 응용)

  • Sohn, Mi-Ryeong;Cho, Rae-Kwang
    • Food Science and Preservation
    • /
    • v.7 no.2
    • /
    • pp.155-159
    • /
    • 2000
  • Apple fruit grading is largely dependant on skin color degree. This work reports about the possibility of nondestructive assessment of apple fruit color using infrared(NIR) reflectance spectroscopy. NIR spectra of apple fruit were collected in wavelength range of 1100~2500nm using an InfraAlyzer 500C(Bran+Luebbe). Calibration as calculated by the standard analysis procedures MLR(multiple linear regression) and stepwise, was performed by allowing the IDAS software to select the best regression equations using raw spectra of sample. Color degree of apple skin was expressed as 2 factors, anthocyanin content by purification and a-value by colorimeter. A total of 90 fruits was used for the calibration set(54) and prediction set(36). For determining a-value, the calibration model composed 6 wavelengths(2076, 2120, 2276, 2488, 2072 and 1492nm) provided the highest accuracy : correlation coefficient is 0.913 and standard error of prediction is 4.94. But, the accuracy of prediction result for anthocyanin content determining was rather low(R of 0.761).

  • PDF

Nondestructive determination of physico-chemical properties in compost by NIRS

  • Seo, Sang-Hyun;Lee, Chang-Hee;Park, Sung-Hun;Cho, Rae-Kwang;Park, Woo-Churl
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1622-1622
    • /
    • 2001
  • The purpose of this research was to develop a the reflection technique with near infrared (NIR) radiation for estimating physico-chemical properties in compost. The composts (cattle, pig, chicken and waste composts) were air dried and then ground to pass through a 0.5 or 2mm sieve for the physico-chemical properties and spectroscopic determinations. The physico-chemical properties of compost were shown high values ; moisture(30-60%), T-N(0.8-2.9%), organic matter(29-89%), pH(5.89-9.60) K$_2$O(0.27-5.66%), P2O$\sub$5/(0.07-2.62%), CaO(0.03-4.80%), MgO(0.09-1.56%), NaCl(0.01-1.13%), EC(1.41-13.76dS/m). Generally, we should select a simple calibration and prediction method for determining physico-chemical properties in compost under similar accuracy and precision of prediction. It should be remembered that the NIRS approach will never replace the traditional methods. However, NIRS technique may be an effective method for rapid and nondestructive measurements of a large number of compost samples. Near infrared reflectance spectra of composts was obtained by Infra Alyzer 500 scanning spectrophotometer at 2-nm intervals from 1100 to 2500nm. Multiple linear regression(MLR) or partial least square regression (PLSR) was used to evaluate a NIRS method for the rapid and nondestructive determination of physico-chemical properties and humic acid contents in composts. The standard error of prediction(SEP) for finely sized sample(<0.5mm) and coarsely sized sample(<2mm) did not show much difference. The NIR instrument of filter type showed the same accuracy of the monochromator scanning type to estimate the compost properties. The results summarized that NIR spectroscopy can be used as a routine testing method to determine quantitatively the OM, moisture, T-N, color, pH, cation content in the compost samples nondestructively.

  • PDF

Differentiation between Normal and White Striped Turkey Breasts by Visible/Near Infrared Spectroscopy and Multivariate Data Analysis

  • Zaid, Amal;Abu-Khalaf, Nawaf;Mudalal, Samer;Petracci, Massimiliano
    • Food Science of Animal Resources
    • /
    • v.40 no.1
    • /
    • pp.96-105
    • /
    • 2020
  • The appearance of white striations over breast meat is an emerging and growing problem. The main purpose of this study was to employ the reflectance of visible-near infrared (VIS/NIR) spectroscopy to differentiate between normal and white striped turkey breasts. Accordingly, 34 turkey breast fillets were selected representing a different level of white striping (WS) defects (normal, moderate and severe). The findings of VIS/NIR were analyzed by principal component (PC1) analysis (PCA). It was found that the first PC1 for VIS, NIR and VIS/NIR region explained 98%, 97%, and 96% of the total variation, respectively. PCA showed high performance to differentiate normal meat from abnormal meat (moderate and severe WS). In conclusion, the results of this research showed that VIS/NIR spectroscopy was satisfactory to differentiate normal from severe WS turkey fillets by using several quality traits.

Evaluating Spectral Preprocessing Methods for Visible and Near Infrared Reflectance Spectroscopy to Predict Soil Carbon and Nitrogen in Mountainous Areas (산지토양의 탄소와 질소 예측을 위한 가시 근적외선 분광반사특성 분석의 전처리 방법 비교)

  • Jeong, Gwanyong
    • Journal of the Korean Geographical Society
    • /
    • v.51 no.4
    • /
    • pp.509-523
    • /
    • 2016
  • The soil prediction can provide quantitative soil information for sustainable mountainous ecosystem management. Visible near infrared spectroscopy, one of soil prediction methods, has been applied to predict several soil properties with effective costs, rapid and nondesctructive analysis, and satisfactory accuracy. Spectral preprocessing is a essential procedure to correct noisy spectra for visible near infrared spectroscopy. However, there are no attempts to evaluate various spectral preprocessing methods. We tested 5 different pretreatments, namely continuum removal, Savitzky-Golay filter, discrete wavelet transform, 1st derivative, and 2nd derivative to predict soil carbon(C) and nitrogen(N). Partial least squares regression was used for the prediction method. The total of 153 soil samples was split into 122 samples for calibration and 31 samples for validation. In the all range, absorption was increased with increasing C contents. Specifically, the visible region (650nm and 700nm) showed high values of the correlation coefficient with soil C and N contents. For spectral preprocessing methods, continuum removal had the highest prediction accuracy(Root Mean Square Error) for C(9.53mg/g) and N(0.79mg/g). Therefore, continuum removal was selected as the best preprocessing method. Additionally, there were no distinct differences between Savitzky-Golay filter and discrete wavelet transform for visual assessment and the methods showed similar validation results. According to the results, we also recommended Savitzky-Golay filter that is a simple pre-treatment with continuum removal.

  • PDF

Prediction of Chemical Organic Composition of Manure by Near Infrared Reflectance Spectroscopy

  • Amari, Masahiro;Fukumoto, Yasuyuki;Takada, Ryozo
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1265-1265
    • /
    • 2001
  • The organic materials included in excreta of livestock are important resources for organic manure and for improving soil quality, although there is still far from effective using. One reason for this is still unclearly standard of quality for evaluation of manure made from excreta of livestock. Therefore, the objective of this study is to develop rapid and accurate analytical method for analyzing organic compositions of manure made from excreta of livestock, and to establish quality evaluation method based on the compositions predicted by near infrared reflectance spectroscopy (NIRS). Sixteen samples of manure, each eight samples prepared from two treatments, were used in this study. The manure samples were prepared by mixing 560 kg feces of swine,60 kg sawdust with moisture content was adjusted to be 65%. The mixture was then keep under two kinds of shelter, black and clear sheets, as a treatment on the effect of sunlight. Samples were taken in every week (form week-0 to 7) during the process of manure making. Samples were analyzed to determine neutral detergent fiber (NDF), acid detergent fiber (ADF) and acid detergent lignin (ADL) by detergent methods, and organic cell wall (OCW) and fibrous content of low digestibility in OCW (Ob) by enzymatic methods. Biological oxygen demand (BOD) was analyzed by coulometric respirometer method. These compositions were carbohydrateds and lignin that were hardly digested. Spectra of samples were scanned by NIR instrument model 6500 (Pacific Scientific) and read over the range of wavelength between 400 and 2500nm. Calibration equations were developed using eight manure samples collected from black sheet shelter, while prediction was conducted to the other eight samples from clear sheet shelter. Accuracy of NTRS prediction was evaluated by correlation coefficients (r), standard error of prediction (SEP) and ration of standard deviation of reference data in prediction sample set to SEP (RPD). The r, SEP and RPD value of forage were 0.99, 0.69 and 7.6 for ADL, 0.96, 1.03 and 4.1 for NDF, 0.98, 0.60 and 4.9 for ADF, 0.92, 1.24 and 2.6 for Ob, and 0.91, 1.02 and 7.3 for BOD, respectively. The results indicated that NIRS could be used to measure the organic composition of forage used in manure samples.

  • PDF

Effects of variety, region and season on near infrared reflectance spectroscopic analysis of quality parameters in red wine grapes

  • Esler, Michael B.;Gishen, Mark;Francis, I.Leigh;Dambergs, Robert G.;Kambouris, Ambrosias;Cynkar, Wies U.;Boehm, David R.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1523-1523
    • /
    • 2001
  • The wine industry requires practical methods for objectively measuring the composition of both red wine grapes on the vine to determine optimal harvest time; and of freshly harvested grapes for efficient allocation to vinery process streams for particular red wine products, and to determine payment of contract grapegrowers. To be practical for industry application these methods must be rapid, inexpensive and accurate. In most cases this restricts the analyses available to measurement of TSS (total soluble solids, predominantly sugars) by refractometry and pH by electropotentiometry. These two parameters, however, do not provide a comprehensive compositional characterization for the purpose of winemaking. The concentration of anthocyanin pigment in red wine grapes is an accepted indicator of potential wine quality and price. However, routine analysis for total anthocyanins is not considered as a practical option by the wider wine industry because of the high cost and slow turnaround time of this multi-step wet chemical laboratory analysis. Recent work by this ${group}^{l,2}$ has established the capability of near infrared (NIR) spectroscopy to provide rapid, accurate and simultaneous measurement of total anthocyanins, TSS and pH in red wine grapes. The analyses may be carried out equally well using either research grade scanning spectrometers or much simpler reduced spectral range portable diode-array based instrumentation. We have recently expanded on this work by collecting thousands of red wine grape samples in Australia. The sample set spans two vintages (1999 and 2000), five distinct geographical winegrowing regions and three main red wine grape varieties used in Australia (Cabernet Sauvignon, Shiraz and Merlot). Homogenized grape samples were scanned in diffuse reflectance mode on a FOSE NIR Systems6500 spectrometer and subject to laboratory analysis by the traditional methods for total anthocyanins, TSS and pH. We report here an analysis of the correlations between the NIR spectra and the laboratory data using standard chemometric algorithms within The Unscrambler software package. In particular, various subsets of the total data set are considered in turn to elucidate the effects of vintage, geographical area and grape variety on the measurement of grape composition by NIR spectroscopy. The relative ability of discrete calibrations to predict within and across these differences is considered. The results are then used to propose an optimal calibration strategy for red wine grape analysis.

  • PDF