• Title/Summary/Keyword: Near Earth Objects

Search Result 54, Processing Time 0.028 seconds

Dynamical Evolution of the Dark Asteroids with Tisserand parameter

  • Kim, Yun-Yeong;Ishiguro, Masateru;Jeong, Jin-Hun;Yang, Hong-Gyu;Usui, Fumihiko
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.98.2-98.2
    • /
    • 2012
  • It has been speculated that there could be dormant or extinct comets in the list of known asteroids, which appear asteroidal but are icy bodies originating from outer solar system. However, little is known about the existence of such objects not only because of their complicated chaotic orbits but also because of the limited physical and chemical information. AKARI infrared space mission gave us brand-new albedo catalog of Near Earth Objects, which clues in a better understanding of dark asteroids using both albedo data and dynamical models could be possible. Dark Asteroids with low () albedos are thought to be dormant or extinct comet candidates due to its similar albedo values with comet nucleus. In addition to this, dynamical models indicate that candidate cometary objects have Tisserand parameter. Based on both observational and dynamical criteria, we obtained 196 dark asteroids lists. We numerically integrated backward their orbits using the N-body code Mercury6 (Chambers 1999) during 10 million years to track the past orbits of bodies. We picked out 14 comet candidates that show abnormal orbits in the past by analyzing orbital elements among 196 candidates. From the dynamical evolution simulations, we finally obtained 3 most-likely comet candidates; 944Hidalgo,2006QL39,andP/SidingSpring.Twoofthemareconsistent with past research; P/Siding Spring is a known comet and 944 Hidalgo is a most-likely comet candidate in asteroid populations. Since they all have stable orbits in nowadays although they have unstable orbit in the past, we could conclude that they may be not active comets but dormant or extinct comets.

  • PDF

Apophis Rendezvous Mission: I. Science Goals

  • Kim, Myung-Jin;Moon, Hong-Kyu;Choi, Young-Jun;Jeong, Minsup;Choi, Jin;JeongAhn, Youngmin;Yang, Hongu;Baek, Seul-Min;Lee, Hee-Jae;Ishiguro, Masateru
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.43.4-44
    • /
    • 2021
  • 99942 Apophis is an Sq-type Aten group Near-Earth Asteroid (NEA) with an estimated size of 370 m. It will approach the Earth to come within the geostationary orbit during the upcoming encounter on April 13, 2029 to offer a unique chance to study its 1) global properties, 2) surface arrangements, and 3) their detectable changes expected to happen, in sub-meter scale. What measurable scientific goals for the asteroid in this "once a millennium" event could transform our knowledge of planetary science and defense? The Apophis rendezvous mission aims to understand the characteristics of the small solar system body's nature. It also prepares for potential threats from natural objects by measuring in-situ surface, shape, rotation, and orbit changes expected to occur when the target asteroid passes close to the Earth in 2029. We will present an overview of the mission scheduled to be launched from late 2026 to early 2027 and introduce scientific objectives.

  • PDF

The phase angle dependences of Reflectance on Asteroid (25143) Itokawa from the Hayabusa Spacecraft Multi-band Imaging Camera(AMICA)

  • Lee, Mingyeong;Ishiguro, Masateru
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.61.3-62
    • /
    • 2015
  • Remote-sensing observation is one of the observation methods that provide valuable information, such as composition and surface physical conditions of solar system objects. The Hayabusa spacecraft succeeded in the first sample returning from a near-Earth asteroid, (25143) Itokawa. It has established a ground truth technique to connect between ordinary chondrite meteorites and S-type asteroids. One of the scientific observation instruments that Hayabusa carried, Asteroid Multi-band Imaging Camera(AMICA) has seven optical-near infrared filters (ul, b, v, w, x, p, and zs), taking more than 1400 images of Itokawa during the rendezvous phase. The reflectance of planetary body can provide valuable information of the surface properties, such as the optical aspect of asteroid surface at near zero phase angle (i.e. Sun-asteroid-observer's angle is nearly zero), light scattering on the surface, and surface roughness. However, only little information of the phase angle dependences of the reflectance of the asteroid is known so far. In this study, we investigated the phase angle dependences of Itokawa's surface to understand the surface properties in the solar phase angle of $0^{\circ}-40^{\circ}$ using AMICA images. About 700 images at the Hayabusa rendezvous phase were used for this study. In addition, we compared our result with those of several photometry models, Minnaert model, Lommel-Seeliger model, and Hapke model. At this conference, we focus on the AMICA's v-band data to compare with previous ground-based observation researches.

  • PDF

ICE ABSORPTION FEATURES IN NIR SPECTRA OF GALACTIC OBJECTS

  • Mori, Tamami I.;Onaka, Takashi;Sakon, Itsuki;Ohsawa, Ryou;Kaneda, Hidehiro;Yamagishi, Mitsuyoshi;Okada, Yoko;Tanaka, Masahiro;Shimonishi, Takashi
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.105-107
    • /
    • 2017
  • We present results of AKARI/IRC near-infrared (NIR) slit-spectroscopy ($2.5-5.0{\mu}m$, R ~ 100) of Galactic sources, focusing on ice absorption features. We investigate the abundance of $H_2O$ and $CO_2$ ices and other ice species (CO and XCN ices) along lines of sight towards Galactic H $\small{II}$ regions, massive YSOs, and infrared diffuse sources. Even among those different kinds of astronomical objects, the abundance ratio of $CO_2$ to $H_2O$ ices does not vary significantly, suggesting that the pathway to $CO_2$ ice formation driven by UV irradiation is not effective at least among the present targets.

DEEP-South: 2nd phase of observations for small Solar System bodies

  • Kim, Myung-Jin;Choi, Young-Jun;Yang, Hongu;Lee, Hee-Jae;Kim, Dong-Heun;JeongAhn, Youngmin;Roh, Dong-Goo;Moon, Hong-Kyu;Chang, Chan-Kao;Durech, Josef;Broz, Miroslav;Hanus, Josef;Masiero, Joseph;Mainzer, Amy;Bauer, James
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.46.1-46.1
    • /
    • 2020
  • DEEP-South (DEep Ecliptic Patrol of the Southern Sky) team will start the 2nd phase of KMTNet observation in Oct 2020. The DEEP-South observation mainly consists of three survey modes: (1) Activity survey (AS) that aims at finding active phenomena of small Solar System bodies. (2) Light curve survey (LS) targets to discover and characterize light variations of asteroids. And (3) Deep drilling survey (DS) focuses on the objects beyond the orbit of Jupiter (Centaurus and trans-Neptunian objects) as well as near Earth asteroids. For asteroid family (AF) studies and target of opportunity (TO) observations for urgent photometric follow-up, targeted mode will also be used. DEEP-South team is awarded 7.0% of the telescope time at each site every year from Oct 2020 to Sep 2023 in the 2nd phase of KMTNet operation which corresponds to about 75 full nights a year for the network. In this presentation, we will introduce our survey strategy and observation plan.

  • PDF

DEEP-South: Preliminary Lightcurve Analysis of Potentially Hazardous Asteroids (PHAs)

  • Kim, Myung-Jin;Moon, Hong-Kyu;Choi, Young-Jun;Yim, Hong-Suh;Park, Jintae;Roh, Dong-Goo;Lee, Hee-Jae;Oh, Young-Seok
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.55.1-55.1
    • /
    • 2016
  • Near Earth Asteroid (NEA) population has attracted keen attention not only from the scientific community but from the general public ever since their terrestrial impact risk achieved wide recognition. Potentially Hazardous Asteroids (PHAs), the subset of NEAs, recently became the center of interest of planetary defense folks and mining industry due to their proximity to, and the potential effects on planet Earth. However, we have long been ignorant about either the physical properties or dynamical source regions of individual objects. For instance, their rotational periods are only known for five percent of the total population (The NEA Database of DLR, updated on Feb 2016). The primary scientific objective of DEEP-South (DEep Ecliptic Patrol of the Southern sky) is to physically characterize 70 percent of km-class PHAs until 2019. In order to achieve this goal, we implemented an observation mode so-called "OC (Opposition Census)" targeting objects around opposition. OC observations were conducted during the period between Feb 2015 and Mar 2016, at CTIO in early periods, and at three KMTNet stations (CTIO, SSO and SAAO) since late July 2015, excluding the "bulge season" when the telescope time is exclusively used for exoplanet search. We present the preliminary lightcurves of 66 PHAs and 59 NEAs that we obtained during the OC runs.

  • PDF

Detection of unexploded ordnance (UXO) using marine magnetic gradiometer data (해양 자력구배 탐사자료를 이용한 UXO 탐지)

  • Salem Ahmed;Hamada Toshio;Asahina Joseph Kiyoshi;Ushijima Keisuke
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.1
    • /
    • pp.97-103
    • /
    • 2005
  • Recent development of marine magnetic gradient systems, using arrays of sensors, has made it possible to survey large contaminated areas very quickly. However, underwater Unexploded Ordnances (UXO) can be moved by water currents. Because of this mobility, the cleanup process in such situations becomes dynamic rather than static. This implies that detection should occur in near real-time for successful remediation. Therefore, there is a need for a fast interpretation method to rapidly detect signatures of underwater objects in marine magnetic data. In this paper, we present a fast method for location and characterization of underwater UXOs. The approach utilises gradient interpretation techniques (analytic signal and Euler methods) to locate the objects precisely. Then, using an iterative linear least-squares technique, we obtain the magnetization characteristics of the sources. The approach was applied to a theoretical marine magnetic anomaly, with random errors, over a known source. We demonstrate the practical utility of the method using marine magnetic gradient data from Japan.

Spin and shape analysis for the Mars-crossing asteroid 2078 Nanking

  • Choi, Jung-Yong;Kim, Myung-Jin;Choi, Young-Jun;Yoon, Tae Seog
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.85.2-86
    • /
    • 2015
  • The YORP effect is non-gravitational force that changes the spin-status of asteroid. So far this effect has been directly detected only from the Near-Earth asteroids (Taylor et al. 2007; Lowry et al. 2007, 2014; Breiter et al. 2011; Durech et al. 2008, 2012). Pravec at el. 2008 found the evidences for changing spin rate of small asteroids (3 - 15 km) by the YORP effect in the Main-Belt and Mars-crossing asteroids. The Mars-crossing asteroids (1.3 < q < 1.66 AU) are objects that cross orbit of the Mars. The Mars-crossing asteroids are regarded as one of the main sources for the Near-Earth asteroids. We expect that rotation of Mars-crossing asteroids would be influenced by the YORP effect. We try to search observational evidence of the YORP effect for the Mars-crossing asteroid. Our target 2078 Nanking is a population of the Mars-crossing asteroid. First light-curve of 2078 Nanking was obtained from Mohamed et al. 1994, and Warner et al. 2015 recently published new observational data. We observed this asteroid on 26th Nov. 2014 and 17th Jan. 2015 using SOAO (Sobaeksan Optical Astronomy Observatory) 0.61 m telescope with 4K CCD. Using light-curve inversion method (Kaasalainen & Torppa 2001; Kaasalainen et al. 2001), we try to determine the pole orientation and shape model of this asteroid based on the combination of our light-curve and literature photometric data. Knowing spin parameters, such as rotational period and spin axis, are essential for studying the YORP effect. In this presentation, we provide some preliminary results of our recent study: light-curve and processing of shape modeling of 2078 Nanking. We plan to find observational clue for the YORP effect on the Mars-crossing asteroids.

  • PDF

A Study of Polarimetric Properties of Comet C/2013 US10 (Catalina) in Optical and Near-Infrared Wavelength Regions

  • Kwon, Yuna Grace;Ishiguro, Masateru;Kuroda, Daisuke;Hanayama, Hidekazu;Kawabata, Koji S.;Akitaya, Hiroshi;Itoh, Ryosuke;Nakaoka, Tatsuya;Toda, Hiroshi;Yoshida, Michitoshi;Kawai, Nobuyuki;Watanabe, Jun-Ichi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.50.2-50.2
    • /
    • 2016
  • Polarization is a rich source of information on the physical properties of astronomical objects. In particular, scattered sunlight by optically thin media (e.g., cometary comae) shows linear polarization of light, which highly depends on the phase angle (an angle between the Sun-Comet-Earth), wavelengths, and physical properties of cometary dust particles such as size, composition, and structures. Here, we present a study of polarimetric properties of non-periodic comet C/2013 US10 (Catalina) in optical and near-infrared wavelength regions obtained from imaging, spectroscopy, and polarimetric observations taken on UT 2015 December 17 - 19 welcoming its (probably) first close approach to the Earth. In this presentation, we want to introduce our progress since the last Korean Astronomical Society meeting (at BEXCO, Busan, 2016 April 14 - 15) especially in terms of spatial variations of degree of linear polarization (DOLP) and its possible scenarios to explain the correlations with other observational results. In particular, we found that there is strong anti-correlation between the gas/dust flux ratio and DOLP at the cometocentric distance of $(2-5){\times}104 km$. Besides, within 10 arcseconds in radii (corresponding to inner coma region of 104 km from the center), the inverse relationship of these two parameters does not hold anymore. We conjecture that the rapid outward increase of DOLP can be supported by either the sublimation/evaporation of icy volatiles, disaggregation of cometary dust particles ejected from the nucleus, and/or difference of dominant dust particle sizes. From our results, we can conclude that comet C/2013 US10 (Catalina) corroborates rather indefinite traditional classification of poalrimetric classes of comets, and provides good opportunity to study less processed material which probably cherishes its memory at the formation epoch of the Solar System.

  • PDF

Radial Velocities of Galactic Planetary Nebulae (행성상성운의 분포와 시선속도 연구)

  • Huh Seung-Jae;Hyung Siek
    • Journal of the Korean earth science society
    • /
    • v.26 no.7
    • /
    • pp.725-731
    • /
    • 2005
  • The distribution and kinematic information of the planetary nebula (PN) may provide a hint about the Galactic dynamics and evolutionary history. An analysis of the Galactic planetary nebular distribution and kinematics (distance, direction, velocity) is underwent, using the 502 PNs observational data given in the ‘THE STRASBOURG-ESO CATALOGUE OF GALACTIC PLANETARY NEBULAE.’ The representative average radial velocities, $(V_r)s$ is derived in six different directions of galactic latitudes, $l = 0^{\circ},\;90{\circ},\;180{\circ},\;270{\circ},$ plus apex and antapex $(56{\circ},\;236{\circ})$, respectively. The PNe near the apex approaches to the Sun with radial velocities, which values are $(V_r) = 69.0 km/s;$ whereas, those near the antapex recedes with $(V_r) = 64.1 km/s$, respectively. No particular trends are found along the z direction, although more PNs are found below the Galactic plane. This implies that the 3rd generation objects, PNs, move slowly on the galactic plane compared to the 4th generation stars like the Sun, indicative of possible interaction.