• Title/Summary/Keyword: NdFeCoB

Search Result 103, Processing Time 0.019 seconds

Compositional Effect on the Magnetic Properties of Nd-Fe-Co-B and Nd-Fe-Co-Zr-B Bonded Magent (합금조성에 따른 Nd-Fe-Co-B 및 Nd-Fe-Co-Zr-B계 본드자석의 자기특성)

  • 최승덕;이우영;양충진
    • Journal of the Korean Magnetics Society
    • /
    • v.1 no.2
    • /
    • pp.60-68
    • /
    • 1991
  • In compacting the melt-spun $Nd_{14}Fe_{76}Co_{4}B_{6}$ and $Nd_{10.5}Fe_{79}Co_{2}Zr_{15}B_{7}$ magnetic powders. the difference in composition induces a different behavior of closed packing rate as a function of aspect ratio of the powders. The $Nd_{10.5}Fe_{79}Co_{2}Zr_{1.5}B_{7}$ alloy having a low Co/Fe ratio (low density) shows the better green density to have an enhanced closed packing rate. An empirical power equation relating the green density with the compacting pressure was obtained such as ${\phi}(g/cm^{2})=5.2~5.6{\times}P^{0.045~0.065}(ton/cm^{2})$. The $Nd_{14}Fe_{76}Co_{4}B_{6}$ alloy having a high Nd/Fe ratio possesses much finer grain size(50~60 nm) than that of $Nd_{10.5}Fe_{79}Co_{2}Zr_{1.5}B_{7}$ alloy and shows the higher coercivity($iH_{c}=14~15kOe$). The higher Nd/Fe ratio in the melt-spun Nd-Fe-Co-B alloy, where the domain wall pinning mechanism was found to be predominant, assists the formation of Nd-rich grain boundary phase acting as a pinning site. The grain boundary ranges over $12~16\;{\AA}$ thick in the Nd-Fe-Co-B alloy while it ranges over $8~12\;{\AA}$ thick in the Nd-Fe-Co-Zr-B alloy.

  • PDF

Effect of Co-Substitution on the Crystallization and Magnetic Properties of a Mechanically Milled Nd15(Fe1-xCox)77B8 (x=0-0.6) Alloy

  • Kwon, H.W.;Yang, C.J.
    • Journal of Magnetics
    • /
    • v.7 no.4
    • /
    • pp.143-146
    • /
    • 2002
  • Mechanical milling technique is considered to be a useful way of processing the fine Nd-Fe-B-type powder with high coercivity. In the present study, phase evolution of the $Nd_{15}(Fe_{1-x}Co_{x})_{77}B_{8}$ (x=0-0.6) alloys during the high energy mechanical milling and annealing was investigated. The effect of Co-substitution on the crystallization of the mechanically milled $Nd_{15}(Fe_{1-x}Co_{x})_{77}B_{8}$ amorphous material was examined. The Nd-Fe-B-type alloys can be amorphized completely by a high-energy mechanical milling. On annealing of the amorphous material, fine $\alpha$-Fe crystallites form first from the amorphous. These fine $\alpha$-Fe crystallites reacts with the remaining amorphous afterwards, leading to crystallization to $Nd_2Fe_{14}$B phase. The Co-substitution for Fe in $Nd_{15}(Fe_{1-x}Co_{x})_{77}B_{8}$ ($\mu$x=0∼0.6) alloys lower significantly the crystallization temperature of the amorphous phase to the $Nd_2Fe_{14}$B phase. The mechanically milled and annealed $Nd_{15}Fe_{77}B_8$ alloy without Co-substitution exhibits consistently better magnetic properties with respect to the alloys with Co-substitution.

Influence of Nd Content on Magnetic Properties of Nanocrystalline $\alpha$-(Fe, Co)-Based Nd-(Fe, Co)-B-Nb-Cu Alloys ($\alpha$-(Fe, Co)기 Nd-(Fe, Co)-B-Nb-Cu 초미세결정립합금의 자기특성에 미치는 Nd의 영향)

  • 조덕호;조용수;김택기;송민석;김윤배
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.3
    • /
    • pp.154-158
    • /
    • 1999
  • Magnetic properties and microstructure of nanocrystalline $\alpha$-(Fe, Co)-based Nd-(Fe, Co)-B-Nb-Cu alloys have been investigated. $Nd_x(Fe_{0.9}Co_{0.1})_{90-x}B_6Nb_3Cu_1$(x=2, 3, 4, 5, 6) alloys prepared by rapid solidification process show amorphous phase except the one with x=2. By a proper annealing, the amorphous in the alloy is changed to a nanocrystalline phase. It is confirmed that the nanocrystalline alloys are composed of $\alpha$-(Fe, Co) and $Nd_2(Fe, Co)_{14}B_1$ phase. The optimally annealed $Nd_3(Fe_{0.9}Co_{0.1})_87B_6Nb_3Cu_1$ alloy shows the highest remanence of 1.55 T. The coercivity increases with the increase of Nd content The maximum coercivity of 4.6 kOe is obtained from an optimally annealed $Nd_6(Fe_{0.9}Co_{0.1})_84B_6Nb_3Cu_1$ alloy, resulting in the maximum energy product of 10.6 MGOe.

  • PDF

Magnetic Propertes of $Nd_{x}{(Fe_{0.9}Co_{0.1})}_{90-x}B_{6}Nb_{3}Cu_{1}(x=\;3,\;4,\;5)$ Nanocrystalline Alloys ($Nd_{x}{(Fe_{0.9}Co_{0.1})}_{90-x}B_{6}Nb_{3}Cu_{1}(x=\;3,\;4,\;5)$ 초미세결정립합금의 자기특성)

  • 조용수;김만중;천정남;김택기;박우식;김윤배
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.880-894
    • /
    • 1995
  • Magnetic properties of $Nd_{x}{(Fe_{0.9}Co_{0.1})}_{90-x}B_{6}Nb_{3}Cu_{1}(x=\;3,\;4,\;5)$ rrelt-spun alloys with 6 at% B content were studied aiming for finding out a new $\alpha$-Fe based Nd-Fe-B nanocrystalline alloy with good hard magnetic properties. $Nd_{x}{(Fe_{0.9}Co_{0.1})}_{90-x}B_{6}Nb_{3}Cu_{1}$ melt-spun alloys prepared by RSP crystallized to nanocrystalline phase. An optimally annealed $Nd_{3}{(Fe_{0.9}Co_{0.1})}_{87}B_{6}Nb_{3}Cu_{1}$ melt-spun alloys had larger volume ratio of $\alpha$-Fe(Co) than that of higher Nd content alloy and showed high remanence of about 1.6 T. On the contrary, the increase of Nd content in $Nd_{x}{(Fe_{0.9}Co_{0.1})}_{90-x}B_{6}Nb_{3}Cu_{1}$ alloys gave rise to gradual increase of an amount of $Nd_{2}{(Fe,\;Co)}_{14}B$ phase and improved coercivity. An optimally annealed $Nd_{5}{(Fe_{0.9}Co_{0.1})}_{85}B_{6}Nb_{3}Cu_{1}$ alloy showed the most improved hard mag¬netic properties. The remanence, coercivityand energy product of the alloy were 1.35 T, 219 kA/m (2.75 kOe), and $129\;kJ/m^{3}$ (16.2 MGOe), respectively.

  • PDF

Magnetic Properties of $\alpha$-Fe Based Nd-Fe-B Nanocrystalline with High Remanence (고잔류자화 $\alpha$-Fe기 Nd-Fe-B 초미세결정립 합금의 자기특성)

  • 조용수;김윤배;박우식;김창석;김택기
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.1
    • /
    • pp.38-41
    • /
    • 1995
  • The effects of Nb and Cu additives as will as substitutional Co into $Nd_{4}Fe_{85.5}B_{10.5}$ melt-spun alloy were studied aiming for finding a $\alpha$-Fe based Nd-Fe-B composite alloys with high energy product. The addition of Nb and Cu to $Nd_{4}Fe_{85.5}B_{10.5}$ decreased the average grain size and increased the coercivity up to 207kA/m(2.6kOe), Further-more, the substitution of Co for Fe in $Nd_{4}Fe_{82}B_{10}Nb_{3}Cu_{1}$ alloy resulted in the decrease of the average grain size (<20nm) and improved the hard magnetic properties. The remanence, coercivity and energy product of optimally annealed $Nd_{4}Fe_{74}Co_{8}B_{10}Nb_{3}Cu_{1}$ alloy were 1.345, 219kA/m(2.75kOe) and $95.5kJ/m^{3}$(12MGOe), respectively.

  • PDF

HDDR Characteristics and Magnetic Properties of Nd15(Fe1-xCox)77B8(x=0-0.6) Alloys

  • Kwon, H.W.
    • Journal of Magnetics
    • /
    • v.7 no.4
    • /
    • pp.127-131
    • /
    • 2002
  • HDDR characteristics and magnetic properties of $Nd_{15}{(Fe_{1-x}Co_{x})}_{77}B_{8}$(x=0-0.6) alloys were investigated. The effect of applying magnetic field during the recombination step on the anisotropic nature of the HDDR-treated material was also examined. The $Nd_{15}{(Fe_{1-x}Co_{x})}_{77}B_{8}$ phase in the Nd-Fe-B alloys with high Co-substitution alloy had remarkably enhanced phase stability. The $Nd_{15}{(Fe_{1-x}Co_{x})}_{77}B_{8}$(x=0-0.6) alloys with high Co-substitution could be HDDR-treated successfully by only using high pressure hydrogen. However, these alloys had no appreciable coercivity. The poor coercivity of the HDDR-treated $Nd_{15}{(Fe_{1-x}Co_{x})}_{77}B_{8}$(x=0-0.6) alloys with high Co-substitution was attributed to the $Nd{(Fe,Co)}_2$ phase in the alloys. The magnetic filed applied during the recombination step had little effect on the anisotropic nature of the HDDR-treated powder.

INFLUENCE OF B AND Nd CONTENT ON THE MAGNETIC PROPERTIES OF ${\alpha}-Fe$ BASED NdFeB MAGNETS WITH ULTRAFINE GRAINS

  • Cho, Y.S.;Kim, Y.B.;Park, W.S.;Kim, C.S.;Kim, T.K.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.427-431
    • /
    • 1995
  • The influence of Nd and B contents on the magnetic properties and structures of ${\alpha}-Fe$ based Nd-(Fe,Co)-B-Mo-Cu alloys was investigated. $Nd_{4}{(Fe_{0.9}Co_{0.1})}_{92-x}B_{x}Mo_{3}Cu_{1}$ and $Nd_{x}{(Fe_{0.9}Co_{0.1})}_{86-x}B_{10}Mo_{3}Cu_{1}$ amorphous alloys prepared by rapid solidification process were crystallized to form nanocrystalline structure. The increase of B content in $Nd_{4}{(Fe_{0.9}Co_{0.1})}_{92-x}B_{x}Mo_{3}Cu_{1}$ nanocrystalline resulted in the change of stucture of soft phase in the sequence of ${\alpha}-Fe$->${\alpha}-Fe+Fe_{3}B$->$Fe_{3}B$. The coercivitis of the alloys were increased with increasing B content and was 263 kA/m at x=18. On the contrary, the remanence has shown an opposite trends. The increase of Nd content in $Nd_{x}{(Fe_{0.9}Co_{0.1})}_{86-x}B_{10}Mo_{3}Cu_{1}$ nanocrystalline containing ${\alpha}-Fe$ as main phase had no effect on the structure and improved coercivity up to 256 kA/m. However, the remanence was decreased from 1.4 T to 1.15 T according to the increase of Nd content.

  • PDF

Texture Study in HDDR-treated Nd-Fe-B-type Particles

  • Kim, Jung-Hwan;Kwon, H.W.
    • Journal of Magnetics
    • /
    • v.10 no.4
    • /
    • pp.152-156
    • /
    • 2005
  • Effects of the disproportionating hydrogen pressure and alloy composition on the texture in the HDDR-treated Nd-Fe-B particles were examined using the $Nd_{12.6}Fe_{81.4}B_6$ and $Nd_{12.6}Fe_{68.7}B_6Co_{11.0}Ga_{1.0}Zr_{0.l}$ alloys. Disproportionation kinetics of the $Nd_2Fe_{14}B$ phase in the Nd-Fe-B alloy was retarded significantly by the addition of Co, Ga and Zr. The retarded disproportionation kinetics of the $Nd_2Fe_{14}B$ phase ensured a wider processing win­dow in terms of disproportionating hydrogen pressure for achieving a texture in the HDDR-treated Nd-Fe-B alloy particles.

The Effects of Co-substitution on the Magnetic Properties of Nanocrystalline Nd-Fe-B based Alloy Containing α-Fe as Main Phase (Co 치환이 α-Fe기 초미세결정립 Nd-Fe-B계 합금의 자기특성에 미치는 영향)

  • Cho, D.H.;Cho, Y.S.
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.1
    • /
    • pp.30-33
    • /
    • 2002
  • The Effects of Co-substitution in the nanocrystalline Nd-Fe-B-Mo-Cu alloys were investigated. $\alpha$-Fe based nanocrystalline Nd-Fe-B-Mo-Cu alloys were prepared by crystallization process of amorphous Nd-Fe-B-Mo-Cu alloy produced by rapid solidification process. The substitution of Co resulted in the decrease of grain size and improves the hard magnetic properties. The remanence, coercivity, and Curie temperature of nanocrystalline N $d_4$(F $e_{0.85}$ $Co_{0.15}$)$_{82}$ $B_{10}$M $o_3$Cu alloy showed more improved magnetic properties than those of Co-free alloy. The grain size was measured to be about 15 nm. The coercivity, remanence and maximum energy product were 239 kA/m, 1.41, and 103.5 kJ/ $m^3$, respectively, for the nanocrystalline N $d_4$(F $e_{0.85}$ $Co_{0.15}$)$_{82}$ $B_{10}$M $o_3$Cu alloy annealed for 0.6 ks at 640 $^{\circ}C$.

Microstructure and Magnetic Properties of Rapidly Solidified Nd-Fe(-Co) and Sm-Co(-Fe) Laves Compounds (급속냉각된 Nd-Fe(-Co)와 Sm-Co(-Fe)계 Laves 화합물의 미세조직과 자기특성)

  • 이우영;최승덕;양충진
    • Journal of the Korean Magnetics Society
    • /
    • v.1 no.1
    • /
    • pp.17-24
    • /
    • 1991
  • Laves phases of $NdFe_2$, $Nd{(Fe_{0.5})}_2$, $SmCo_2$ and $Sm{(Fe_{0.5}Co_{0.5})}_2$ stoichiometry were prepared using a rapid solidification technology. Low temperature magnetic properties show ferromagnetic behaviors for the $Nd{(Fe_{0.5}Co_{0.5})}_2$, $SmCo_2$ and $Sm{(Fe_{0.5}Co_{0.5})}_2$Nd(Feo,Coo,) Laves compounds while a sort of spin reorientation has been suggested for the supposed composition of $NdFe_2$ alloy. This rapidly solidified $NdFe_2$ alloy is believed to consist of metastable rhombohedral $NdFe_7$ phase plus fine particles of Nd-rich phase. Some evidence of phase transition from the mixture of unstable $NdFe_7$ compound plus Nd-rich to $Nd_2Fe_{17}$ plus Fe-Nd-O phase was obtained after annealing the $NdFe_2$, alloy. The pseudo-binary Laves compound, $Sm{(Fe_{0.5}Co_{0.5})}_2$ exhibits a high coercivityof 4 kOe at room temperature with Curie temperature of $400^{\circ}C$ while the $Nd{(Fe_{0.5}Co_{0.5})}_2$ compound shows a magnetic moment of $2.8\;{\mu}_B/f.u.$.

  • PDF