• 제목/요약/키워드: Nd-Fe-B magnets

검색결과 199건 처리시간 0.027초

마그넷 적용 세라믹 코팅 후막의 전자빔 조사 및 열 경화 방법에 따른 특성 (Characterization for Ceramic-coated Magnets Using E-beam and Thermal Annealing Methods)

  • 김혁종;김희규;강인구;김민완;양기호;이병철;최병호
    • 방사선산업학회지
    • /
    • 제3권1호
    • /
    • pp.7-11
    • /
    • 2009
  • Hard magnet was usually used by coating $SiO_2$ ceramic thick films followed by the thermal annealing process. In this work, the alternative annealing process for NdFeB magnets using e-beam sources (1~2 MeV, 50~400 kGy) was investigated. NdFeB magnets was coated with ceramic thick films using the spray method. The optimal annealing parameter for e-beam source reveals to be 1 MeV and 300 kGy. The sample prepared at 1 MeV and 300 kGy was characterized by the analysis of the surface morphology, film hardness, adhesion and chemical stability. The mechanical property of thick film, especially film hardness, is better than that of thermal annealed samples at $180^{\circ}C$. As a result, e-beam annealing process will be one of candidate and attractive heat treatment process. In future, manufacturing process will be carried out in cooperation with the magnet company.

Design Optimization and Fabrication of an Advanced High Gradient Magnetic Separator

  • Park, E.B;Choi, S.D;Yang, C.J
    • Journal of Magnetics
    • /
    • 제5권2호
    • /
    • pp.59-64
    • /
    • 2000
  • A drum type of high gradient magnetic separator was designed and optimized by computer simulations. The magnetic separator consists of high performance rare earth $(Nd_2Fe_14B)$ permanent magnets and magnetic yokes of extremely low carbon steel interconnecting the permanent magnets. Magnetic circuits of the separator were simulated for the aim of the least cost, highest magnetic strength and most efficient function by using specialized S/W (Vector Field Program) employing the Finite Element Method. The magnetic flux density was provided to be strong enough to collect the invisible fine metal particles from the surface of hot rolled steel plate with the efficiency of almost 95%.

  • PDF

가공온도에 따라 다이업셋한 Nd-Fe-B-Cu 합금의 응력과 결정에 관한 연구 (A Study on the Stress and Crystal in Die-Upsetted Nd-Fe-B-Cu Alloys as a Function of Working Temperature)

  • 박정덕;양현수;곽창섭;정원용
    • 열처리공학회지
    • /
    • 제7권1호
    • /
    • pp.61-71
    • /
    • 1994
  • This study is to investigate the stress distributions, crystal orientations and magnetic properties during die-upsetting according to working temperature of Nd-Fe-B-Cu alloys. The stress distributions in the specimens during compressing process were calculated by a finite element method program(SPID). The calculated stresses were effective stress (${\sigma}_{eff}$), compression stress(${\sigma}_z$), radial direction stress(${\sigma}_r$) rotational direction stress(${\sigma}_e$) and shear stress(${\tau}_{rz}$). The stress distributions of ${\sigma}_z$, obtained by a computer simulation showed that the stress components causing the magnetic alignment during die-upsetting of the cast magnets were very high at the center-part of a specimen, and decreased toward the periphery-part of a specimen. In view of the above results the magnetic properties should be better at the center-part of a specimen than any other parts. But the measured magnetic properties were better at the mid-part. These results should be due to the fact that the specimens were casted. Normally the magnetic properties are affected by the casting process as well as by the stress levels. ${\sigma}_r$, ${\sigma}_e$ are thought to affect the liquid phase flowing and domain patterns, respectively. The influence of ${\tau}_{rz}$ was trivial, ${\sigma}_{eff}$ distributed similar throughout the specimen. The Nd-rich phase appeared at the peripheral of the specimen where the stress level of ${\sigma}_r$, ${\sigma}_z$, was low or the stress level of ${\sigma}_e$ was high. The Nd-rich phase was squeezed out during die-upsetting. This phase had an effect on the crystal orientation and grain growth. The stress distributions of alloy were irregular at the parts of the specimen where the die contacted with specimen.

  • PDF

초고속 영구자석형 동기 전동기의 회전자 손실 특성해석 (Characteristic Analysis of Rotor Losses in High-Speed Permanent Magnet Synchronous Motor)

  • 장석명;조한욱;이성호;양현섭
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권3호
    • /
    • pp.143-151
    • /
    • 2004
  • High-speed permanent magnet machines are likely to be a key technology for electric drives and motion control systems for many applications, since they are conductive to high efficiency, high power density, small size and low weight. In high-speed machines, the permanent magnets are often contained within a retaining sleeve. However, the sleeve and the magnets are exposed to high order flux harmonics, which cause parasitic eddy current losses. Rotor losses of high-speed machines are of great importance especially in high-speed applications, because losses heat the rotor, which is often very compact construction and thereby difficult to cool. This causes a danger of demagnetization of the NdFeB permanent magnets. Therefore, special attention should be paid to the prediction of the rotor losses. This paper is concerned with the rotor losses in permanent magnet high-speed machines that are caused by permeance variation due to stator slotting. First, the flux harmonics are determined by double Fourier analysis of the normal flux density data over the rotor surface. And then, the rectilinear model was used to calculate rotor losses in permanent magnet machines. Finally, Poynting vector have been used to investigate the rotor eddy current losses of high-speed Permanent magnet machine.

영구자석 계자와 전기자 자속의 상호작용 효과를 고려한 가동코일형 리니어모터의 정특성 (Static Characteristics of a Moving-Coil-Type Linear Motor in Consideration of Interaction between PM and Armature Field)

  • 장석명;정상섭;박희창;문석준;박찬일;정태영
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제48권1호
    • /
    • pp.19-26
    • /
    • 1999
  • A moving-coil-type linear motor, designed and fabricated, is consisted of the NdFeB permanent magnets with high specific energy as the stator, a coil-wrapped nonmagnetic hollow rectangular structure and an iron core as a pathway for magnetic flux. The interaction between permanent magmet and armature fie1d, so called "push/pull effect", is to shift the airgap flux density variation due to the magnet alone by a certain amount. Thrust therefore is shift downward or upward. The push/pull effect was presented through the FEM analysis and the static tests. We compared the thrust obtained through the FEM analysis with the static tests. Finally, we present the linearity and correction coefficients of the thrust in consideration of the push/pull effects.l effects.

  • PDF

BLDC 전동기의 정현적 공극 자속밀도 구현에 의한 진동.소음 저감 (Reduction of Vibration and Noise of BLDC Motors by Realizing Sinusoidal Air-Gap Flux Density Distribution)

  • 김사무엘;정승호;권병일;김홍석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.95-97
    • /
    • 2006
  • Cogging torque is often a principal source of vibration, noise and difficulty of control in BLDC motors. Therefore, this paper will present a design method of magnetization system with sinusoidal air-gap flux density distribution of Nd-Fe-B magnets in ring type for reduction of Vibration and Noise and low manufacturing cost.

  • PDF

Effects of Injection Conditions on the Mechanical Properties of Nd-Fe-B Dielectromagnets

  • B.Slusarek;D.Bialo;J.Gromek;T.Kulesza
    • Journal of Magnetics
    • /
    • 제4권2호
    • /
    • pp.52-54
    • /
    • 1999
  • Injection molding is one of the methods to prepare dielectromagnets-permanent magnets made from hard magnetic powder (or from mixture of powders) bonded by dielectric materials. Magnetic properties of dielectromagnets are worse than those of sintered magnets made from the same hard magnetic powders, but this type of the permanent magnet has many advantages. One of them is simpler technology-easier in comparison to the technology of sintered magnets. The injection molded dielectromagnets do not need any final treatment. This technology permits to control magnetic, thermal and mechanical properties of dielectromagnets. The main chracteristics of dielectormagnets are magnetic properties, however mechanical properties have serious influence onto a range of their applications. The main factors shaping mechanical properties have serious influence onto a range of their applications. The main factors shaping mechanical properties of dielectromagnets are the kind and quantity of resin and the technology. The purpose of this investigateion was to find the correlation between infection conditions and the mechanical properties of dielectromagnets. Influence of two parameters of injection, temperature and pressure on mechanical and magnetic properties of dielectromagnets were not significantly changed. Increasing of pressure of injection also does not influence on mechanical properties of analysed samples, however increasing of temperature of injection significantly improved both compression and bending strength.

  • PDF

프라이자흐 모델링과 유한요소법을 이용한 라인 스타트 영구자석 전동기의 영구자석 자화 특성 분석 (PM Magnetization Characteristics Analysis of a Post-Assembly Line Start Permanent Magnet Motor using coupled Preisach Modeling and Finite Element Method)

  • 라영각;이중호
    • 전기학회논문지
    • /
    • 제63권4호
    • /
    • pp.469-475
    • /
    • 2014
  • This paper deals with the characteristics evaluations of PM magnetization using stator coil in a Post-Assembly Line Start Permanent Magnet Motor (LSPMM) using a coupled Finite Element Method (FEM) and Preisach modeling, which is presented to analyze the magnetic characteristics of permanent magnets. The focus of this paper is the characteristics analysis relative to magnetizing direction and quantity of permanent magnets due to the eddy current occurring in the rotor bar during magnetization of Nd-Fe-B.

DIELECTROMAGNETS FROM MIXTURE OF HARD MAGNETIC POWDERS FOR SMALL ELECTRICAL MOTORS

  • Kordecki, Andrzej;Slusarek, Barbara
    • 한국자기학회지
    • /
    • 제5권5호
    • /
    • pp.824-827
    • /
    • 1995
  • Dielectromagnets are permanent magnets made from resin-bonded hard magnetic powders. Magnetic properties of dielectromagnets depend on kind of used hard magnetic materials as chemical compound, shape, size of grain and applied technology. Comparison of advantages and disadvantages of dielectromagnets made from different kind of magnetic powders induced us to try to prepare dielectromagnets from mixture of hard magnetic powders, not only one of them. The purpose of investigation on this kind of dielectromagnets is to find formula to prepare permanent magnets with properties adequate to different kind of electrical motors requirements. As hard magnetic materials we used powders of ferrite, melt-spun ribbon Nd-Fe-B and Alnico. Papers present results of investigation on technology of this kind of dielectromagnets. It shows also influence of kind of mixture and used technology on magnetic properties of dielectromagnets.

  • PDF