• Title/Summary/Keyword: Nd Magnet

Search Result 270, Processing Time 0.028 seconds

Coercivity of Nd-Fe-B-type Fine Particles Prepared from Different Precursor Materials

  • Kim, K.M.;Kwon, H.W.;Lee, J.G.;Yu, J.H.
    • Journal of Magnetics
    • /
    • v.20 no.1
    • /
    • pp.21-25
    • /
    • 2015
  • Fine Nd-Fe-B-type particles were prepared by ball milling of different types of Nd-Fe-B precursor materials, such as die-upset magnet, HDDR-treated material, and sintered magnets. Coercivity dependence on the grain and particle size of the powder was investigated. Coercivity of the milled particles was reduced as the particle size decreased, and the extent of coercivity loss was dependent upon the precursor material. Coercivity loss in the finely milled particles was attributed to the surface oxidation. The extent of coercivity loss in the fine particles was closely linked to grain size of the precursor materials. Coercivity loss was more profound for the fine particles with larger grain size. Contrary to the fine particles from the sintered magnets with larger grain size the fine particles (~10 um) from the die-upset magnet and HDDR-treated material with much finer grain size still retained high coercivity (> 10 kOe for die-upset magnet, > 4 kOe for HDDR-treated material).

A Metallurgical Study on Sputtered thin Film Magnet of high $_{i}\textrm{H}_{c}$ Nd-(Fe, Co)-B alloy and Magnetic

  • Kang, Ki-Won;Kim, Jin-Ku;Song, Jin-Tae
    • Korean Journal of Materials Research
    • /
    • v.4 no.5
    • /
    • pp.535-540
    • /
    • 1994
  • Thin film magnet was fabricated by radio frequency magnetron sputtering using $Nd_13/(Fe.Co)_{70}B_{17}$ alloy target and magnetic properties were investigated according to sputtering conditions from the metallurgical point of view. we could obtain the best preferred orientation of $Nd_2Fe_{14}B$ phase at substrate temperatures between $450^{\circ}C$ and $460^{\circ}C$ with the input power 150W, and thin films had the anisotropic magnetic properties. But, as the thickness of thin film increased, the c-axis orientation gradually tended to be disordered and magnetic properties also become isotropic. Just like Nd-Fe-B meltspun ribbon, the microstructure of thin film magnet was consisted of very find cell shaped $Nd_2Fe_{14}B$ phase and the second phase along grain boundary. While, domain structure showed maze patterns whose magnetic easy axis was was perpendicular to film plane of thin film. It was concluded from these results that the perpendicualr anisotropy in magnetization was attributed to the perpendicular alignment of very find $Nd_2Fe_{14}B$ grains in thin film.

  • PDF

Magnetic Properties of $Nd_{12}Dy_2Fe_{73.2}Co_{6.6}Ga_{0.6}B_{5.6}$ magnets fabricated by current-applied pressure-assisted method

  • Kim, H. T.;S. H. Cho;Kim, Y. B.;G. A. Kapustin;Kim, H. S.
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2002.12a
    • /
    • pp.232-233
    • /
    • 2002
  • Nanostructed high energy Nd-Fe-B based bulk magnet can be prepared by hot-working process (hot press and die-upset) from melt-spun amorphous or nanocrystalline powder.[1] Recently, we have investigated a modified method, current-applied pressure-assisted (CAPA) process, to produce nanocrystalline isotropic and anisotropic NdFeB magnets. The process consists of current-applied pressing the melt-spun powders to obtain isotropic precursor subsequent current-applied deforming the precursor to obtain textured magnet.[2-3] (omitted)

  • PDF

Magnetic Properties of (Nd, Dy)-Fe-B Sintered Magnets Mixed with Dy Compounds (Dy 화합물 혼합에 의한 (Nd, Dy)-Fe-B 소결자석의 자기특성 변화)

  • NamKung, S.;Lee, M.W.;Cho, I.S.;Park, Y.D.;Lim, T.H.;Lee, S.R.;Jang, T.S.
    • Journal of Powder Materials
    • /
    • v.18 no.1
    • /
    • pp.29-34
    • /
    • 2011
  • In order to increase the coercivity of (Nd, Dy)-Fe-B sintered magnets without much reduction of remanence, small amount of Dy compounds such as $Dy_2O_3$ and $DyF_3$ was mixed with (Nd, Dy)-Fe-B powder. After mixing, the coercivity of (Nd, Dy)-Fe-B sintered magnets apparently increased with the increase of Dy compound in the mixture. Addition of $DyF_3$ was more effective than $Dy_2O_3$ for the improvement of coercivity. Reduction of the remanence by the addition of Dy compound, however, was larger than expected mostly due to unresolved coarse Dy compound in the magnet. EPMA analysis revealed that Dy was diffused throughout the grains in the magnet mixed with $DyF_3$ whereas Dy was rather concentrated around grain boundaries in the magnet mixed with $Dy_2O_3$.

The Coercivity Enhancement of (Nd,Dy)-Fe-B Sintered Magnet by Microstructure Control (미세구조 제어를 통한 (Nd,Dy)-Fe-B 소결자석의 보자력 증가)

  • Kim, Jin-Woo;Kim, Se-Hoon;Kim, Young-Do
    • Journal of Powder Materials
    • /
    • v.18 no.1
    • /
    • pp.18-23
    • /
    • 2011
  • Sintered Nd-Fe-B magnets are widely used in many fields such as motors, generators, actuators, microwaves and so on due to their excellent magnetic properties. Many researchers have shown that the Nd-rich phase was essentially important for high magnet properties. In this study, we focused on controlling of the Nd-rich phase to enhance magnetic properties by the cyclic sintering process. Nd-Fe-B based sintered magnets were prepared by isothermal sintering and cyclic sintering processes. Magnetic properties and microstructure of the magnets were investigated. The coercivity was enhanced from 21.2 kOe to 23.27 kOe after 10 cycles of the sintering. The Nd-rich phase was effectively penetrated into the grain boundary between the $Nd_2Fe_{14}B$ grains by the cyclic sintering.