• Title/Summary/Keyword: Nd Magnet

Search Result 270, Processing Time 0.04 seconds

Taguchi Parameter Design for the Fabrication Process of Anisotropic NdFeB Magnet by Single Stroke Hot Deformation

  • Ying Li;Kim, Y. B.;Wang, Lin-shan;Kim, M. J.;M. S. Song;J. H. Yang;D. S. Suhr;Kim, T. K;Kim, C. O.
    • Journal of Magnetics
    • /
    • v.5 no.3
    • /
    • pp.106-109
    • /
    • 2000
  • The single stroke hot deformation is a simple method fur the fabrication of anisotropic NdFeB magnets. In order to obtain the optimum conditions, Taguchi method of experimental design was applied in this work. The optimum conditions obtained on the basis of coercivity in Taguchi analysis was a little different from those of remanence and maximum energy Product. The contribution of each factor to magnetic Properties was calculated in detail.

  • PDF

Construction of a Pulsed Field Magnetometer and Magnetic Properties Measurement of Rare Earth Permanent Magnets (고자장 펄스마그네토미터 구성 및 희토류 영구자석의 자성측정)

  • 김윤배;우병칠;박포규;김만중;김택기
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.4
    • /
    • pp.212-216
    • /
    • 1997
  • A pulsed field magnetometer with maximum applied field of 130 kOe has been constructed. The pulsed field generated by a 18 kJ capacitor bank system combined with a pulse coil was damped oscillation with the period of 10.12 ms. Magnetic hysteresis loop was measured by induction method during 10.12 ms of a pulse duration from the first positive to the second positive peak. The difference from DC magnetic properties due to the eddy current effect was inferred below 3% for the NdFeB magnet with the diameter below 5 mm.

  • PDF

The Design of a Device for the Generation of a Strong Magnetic Field in an Air Gap using Permanent Magnets

  • Zezulka, Vaclav;Straka, Pavel
    • Journal of Magnetics
    • /
    • v.22 no.2
    • /
    • pp.250-256
    • /
    • 2017
  • The article presents the principle of a relatively small device that makes it possible to generate a strong magnetic field in an air gap without electrical energy consumption. It describes the implemented design of this device, the method of the assembly of opposing linear arrays from two NdFeB magnet layers, its advantages, the possible ways of increasing the parameters further and its application in various areas.

A Oen-step Hot-forming Process for the Preparation of Anisotropic Nd-Fe-B Based Magnets

  • Yang, Jung-Pil
    • Journal of Magnetics
    • /
    • v.2 no.3
    • /
    • pp.67-71
    • /
    • 1997
  • A new hot-forming process has been studied to produce anisotropic Nd-Fe-B based magnets from melt-spun ribbons. The ribbon fragments were inserted in a Cu tube and hot-deformed together with one-stroke. At a height reduction ratio of 0.44, the melt-spun ribbons were densified into a magnet with a density of 7.14 g/cm3, and showed a (BH)max of 14.6 MGOe. With further deformation, the magnets were plastically deformed with Cu tubes in the lateral direction, and crystallographic anisotropy was introduced. The magnets with a height reduction ratio of 0.75 exhibited magnetic properties of (BH)max = 32.1 MGOe, Br = 11.7 kG, and iHc = 10.6 kOe. This process shows the possibility that the conventional hot-pressing and subsequent die-upsetting for anisotropic magnets can be simplified into a one-step process.

  • PDF

Fabrication of Deep-Sub-Millimeter-Thick Compacts Using Spark Plasma Sintering

  • Ohashi, T.;Tanaka, T.;Oshiro, K.;Fujimori, H.;Kurisu, H.;Matsuura, M.;Yamamoto, S.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.270-271
    • /
    • 2006
  • Nd-Fe-B type powder was sintered using spark plasma sintering method. Fabricated compact sintered at the temperature of $700\;^{\circ}C$, is found to be a composite magnet with Nd-Fe-Co-B and ${\alpha}-Fe$. The compact sintered at $700\;^{\circ}C$ shows slightly low coercivity and large remanent magnetization comparing to the compact sintered at $600^{\circ}C$ due to the formation of ${\alpha}-Fe$ phase, resulting in the large maximum energy product. Maximum energy product tends to decrease with decreasing thickness of sintered compacts below 0.5 mm in thickness.

  • PDF