• Title/Summary/Keyword: Nd:Yag

Search Result 1,085, Processing Time 0.03 seconds

The Absorption Saturation and Diffraction Efficiency of the Permanent Gratings Due to the Photodarkening in Semiconductor Doped Glasses (반도체가 첨가된 유리의 암색화에 따른 포화흡수 변화와 영구 회절격자의 회절효율 연구)

  • Baek, Sung-Hyun;Shin, Sang-Hoon;Kim, Sang-Cheon;Choi, Moon-Goo;Park, seung-Han;Kim, Ung
    • Korean Journal of Optics and Photonics
    • /
    • v.6 no.4
    • /
    • pp.331-336
    • /
    • 1995
  • The steady-state absorption saturation of the photodarkend SDG was investigated. The absorption saturation intensity was observed to increase for the photodarkened sample. The diffraction efficiency of the permanent grating due to photodarkening was also measured using the backward DFWM technique. For the low backward pump intensity, the diffraction efficiency was proportional to the intensity of the pump beam. The origin of increasing diffraction efficiency is attributed to the difference in absorption between the permanent gratings created by photodarkening. ening.

  • PDF

Laser Cladding with Al-36%Si Powder Paste on A319 Al Alloy Surface to Improve Wear Resistance (A319 알루미늄 합금 표면에 Al-36%Si 합금분말의 레이저 클래딩에 의한 내마모성 향상)

  • Lee, Hyoung-Keun
    • Journal of Welding and Joining
    • /
    • v.35 no.2
    • /
    • pp.58-62
    • /
    • 2017
  • A319 aluminum alloy containing 6.5% Si and 3.5% Cu as major alloying elements has been widely used in machinery parts because of its excellent castability and crack resistance. However it needs more wear resistance to extend its usage to the severe wear environments. It has been known that hyper-eutectic Al-Si alloy having more than 12.6% Si contains pro-eutectic Si particles, which give better wear resistance and lubrication characteristics than hypo-eutectic Al-Si alloy like A319 alloy. In this study, it was tried to clad hyper-eutectic Al-Si alloy on the surface of A319 alloy. In the experiments, Al-36%Si alloy powder was mixed with organic binder to make a fluidic paste. The paste was screen-printed on the A319 alloy surface, melted by pulsed Nd:YAG laser and alloyed with the A319 base alloy. As experimental parameters, the average laser power was changed to 111 W, 202 W and 280 W. With increasing the average laser power, the melting depth was changed to $142{\mu}m$, $205{\mu}m$ and $245{\mu}m$, and the dilution rate to 67.2 %, 72.4 % and 75.7 %, and the Si content in the cladding layer to 16.2 %, 14.6 % and 13.7 %, respectively. The cross-section of the cladding layer showed very fine eutectic microstructure even though it was hyper-eutectic Al-Si alloy. This seems to be due to the rapid solidification of the melted spot by single laser pulse. The average hardness for the three cladding layers was HV175, which was much higher than HV96 of A319 base alloy. From the block-on-roll wear tests, A319 alloy had a wear loss of 5.8 mg, but the three cladding layers had an average wear loss of 3.5 mg, which meant that an increase of 40 % in wear resistance was obtained by laser cladding.

A study of the development of a simple driver for the Pockels cell Q-switch and Its characteristics (단순화된 Pockels cell Q-switch용 구동기 개발 및 특성에 관한 연구)

  • Park, K.R.;Joung, J.H.;Hong, J.H.;Kim, B.G.;Moon, D.S.;Kim, W.Y.;Kim, H.J.;Cho, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.2116-2118
    • /
    • 2000
  • In the technique of Q-switching, very fast electronically controlled optical shutters can be made by using the electro-optic effect in crystals or liquids. The driver for the Pockels cell must be a high-speed, high-voltage switch which also must deliver a sizeable current. Common switching techniques include the use of vacuum tubes, cold cathode tubes, thyratrons, SCRs, and avalanche transistors. Semiconductor devices such as SCRs, avalanche transistors, and MOSFETs have been successfully employed to drive Pockels cell Q-switch. In this study, a simple driver for the Pockels cell Q-switch was developed by using SCRs, pulse transformer and TTL ICs. The Pockels cell Q-switch which was operated by this driver was employed in pulsed Nd:YAG laser system to investigate the operating characteristics of this Q-switch. And we have investigated the output characteristics of this Q-switch as a function of the Q-switch delay time to Xe flashlamp current on.

  • PDF

EFFECT OF LASER IRRADIATION ON DENTIN SURFACE STRUCTURE AND SHEAR BOND STRENGTH OF LIGHT-CURED GLASS IONOMER. (상아질 표면 구조와 광중합형 글라스 아이오노머의 전단강도에 대한 레이저 조사의 효과)

  • Park, Mi-Ryoung;Kim, Jong-Soo;Kim, Yong-Kee
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.25 no.1
    • /
    • pp.76-92
    • /
    • 1998
  • The purpose of this study was to evaluate the possible efficacy of Nd-YAG laser as a dentin conditioner by observing the laser irradiation dentin surface under scanning electron micrograph and measuring shear bond strength of restored light-cured glass ionomer mold. Fifty intact premolars were prepared for shear bond strength tests. The teeth were randomly divided into five groups as follows; Group I. no treatment Group II. 10% poly acrylic acid, 20 sec Group III. laser treatment 2 w, 20 Hz, 2 sec Group IV. laser treatment 2 w, 20 Hz, 5 sec Group V. laser treatment 2 w, 20 Hz, 10 sec Samples of each group were restored with light-cured glass ionomer cement after dentin conditioning and then measuring the shear bond strength of each specimen were measured using universal testing machine. Additional ten premolars were prepared for SEM analysis The result from the this study can be summarized as follows. 1. Shear bond strength of polyacrylic acid-treated group (II) was significantly higher than other groups (p<0.05). 2. No statistically significant difference could be found between three laser-treated groups (III, IV, V) in shear bond strength(p>0.05) 3. According to the result of observation under SEM, Polyacrylic acid was shown to have removed the smear layer effectively and opened the dentinal tubules, whereas the laser has produced the irregular surface mainly composed of melted and fused structure. The microcracks found in laser-treated groups increased in number with irradiation time and formed the regular mesh-type in 10 sec-irradiation group. 4. The ultrastructural change of dentin surface created by laser irradiation was found to the improper for bonding of the glass ionomer restorative materials. And the lower shear bond strength of laser irradiated group might have been due to the failure to form the suit able dentin surface for the glass ionomer to penetrated into and form the proper micromechanical retention.

  • PDF

Design of a Microthruster using Laser-Sustained Solid Propellant Combustion

  • Kakami, Akira;Masaki, Shinichiro;Horisawa, Hideyuki;Tachibana, Takeshi
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.605-610
    • /
    • 2004
  • Solid propellants allow thrusters to be light-weight, com-pact and robust because they require neither tank nor valve, Moreover, the solid propellant will not leak, spill or slosh. Consequently, the solid propellant thruster is one of the potential candidates for the microthruster. On the other hand, the control of the solid propellant combustion is difficult, since the conventional solid propellant continues to bum until all the stored propellant is consumed. Although particular devices like thrust reverser were designed to control the combustion, these devices were rarely used in the practical rocket motors. These devices rise thruster weight as well as complicate the thruster operation. In this study, a solid propellant microthruster using laser sustained combustion was designed in order to develop a high-efficiency microthruster overcoming the previously-mentioned difficulty. This designed thruster has semiconductor lasers and non-self-combustible solid propellants in addition to the conventional solid propellant thruster. In this designed thruster, the semiconductor laser controls the combustion of the non-self-combustible solid propellant. In order to demonstrate that the solid propellant combustion is controllable with laser, some non-self-combustible solid propellants were irradiated with the laser at a back-pressure of about 1㎪. A 40-W class Neodymium Yttrium Aluminum Garnet (ND:YAG) laser was used as a tentative alternate to the semiconductor laser. This experiment has shown that the solid propellant combustion was controllable with 10- W class laser irradiation.

  • PDF

레이저 유기 충격파를 이용한 나노 Trench 에서의 나노입자제거

  • Kim, Jin-Su;Lee, Seung-Ho;Park, Jin-Gu
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.25.1-25.1
    • /
    • 2009
  • Pattern 웨이퍼 상의 오염입자 제거는 반도체 산업의 주된 과제 중 하나이다. Pattern의 선폭이 좁아짐에 따라 Pattern에 손상을 가하지 않고 오염입자를 제거 하는 것은 더욱 어려워지고 있다. 그뿐만 아니라 기존 습식세정 공정에서의 화학액에 의한 환경오염 및 박막의 손실도 문제가 되기 시작했다. 이러한 문제를 해결하기 위해 기존 세정공정에서 화학액의 농도를 낮추고 Megasonic 등을 이용하여 세정력을 보완하는 방법들이 연구되고 있다. 하지만 습식세정의 경우 강한 화학작용으로 인한 표면 손상 및 물 반점의 문제는 여전히 이슈가 되고 있다. 이러한 단점을 극복하기 위하여 건식 세정법이 제시되고 있으며 이 중 레이저 충격파는 레이저를 집속시켜 발생된 충격파를 이용하여 입자를 제거하기 때문에 국부적인 세정이 가능하며 세정력 조절이 가능하여 손상이 세정을 할 수 있다. 그러나 Pattern의 구조에 의해 전되는 세정력의 차이가 발생하고 Trench 내부의 오염입자제거 문제점이 발생할 수 있다. 시편은 Si STI Pattern을 100 nm PSL Particle (Red Fluorescence, Duke Scientific, USA) 을 50ppm 농도로 희석시킨 IPA에 dipping 하여 오염시킨 후 N2 Gas를 이용하여 건조하여 준비하였다. 그리고 레이저 충격파 세정 시스템은 최대 에너지 1.8 J까지 가능한 레이저를 발생하는 1,064 nm Nd:YAG 레이저를 이용하여 실험하였다. 레이져 충격파 실험은 충격파와 시편사이의 거리, gap distance와 에너지를 변환하여 세정효율을 관찰하였다. 세정효율은 세정 전후의 입자 감소량을 현광현미경 (LV-150, Nikon, Japan)를 이용하여 측정하였다. 그 결과, Trench 내부의 오염입자의 경우 Trench 밖의 오염입자에 비해 세정효율이 떨어지는 것으로 나타났으나 시편과 레이저 초점과의 거리가 가까워짐에 따라 Trench 내부의 오염입자에 대한 세정 효율을 증가시킬 수 있었다.

  • PDF

Orientation control of $CuCrO_2$ films on different substrate by PLD (기판에 따른 p-type $CuCrO_2$ 박막의 성장방향변화)

  • Kim, Se-Yun;Sung, Sang-Yun;Jo, Kwang-Min;Hong, Hyo-Ki;Lee, Joon-Hyung;Kim, Jeong-Joo;Heo, Young-Woo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2011.05a
    • /
    • pp.142-142
    • /
    • 2011
  • Epitaxial $CuCrO_2$ thin films have been grown on single crystal substrate of c-plane $Al_2O_3$, $SrTiO_3$, YSZ and Quarts by laser ablation of a $CuCrO_2$ target using 266nm radiation from a Nd:YAG laser. X-ray measurements indicate that the $CuCrO_2$ grows epitaxially on all substrate, with its orientation dependent on the kinds of substrates. Most of the layer were polycrystalline with (001), (015) and random as the dominant surface orientation on c-plane YSZ, $SrTiO_3$ and quarts substrate, respectively. (001) orientated $CuCrO_2$ grows on C-plane $Al_2O_3$ and YSZ substrate, (015) orientated $CuCrO_2$ films are found on c-plane $SrTiO_3$ substrate and random orientated $CuCrO_2$ films grows on quarts substrate. These data are compared with the in-plane orientation and the mismatch of the $CuCrO_2$ and each substrate lattices in an attempt to relate the preferred orientation to the plane of the sapphire on which it is grown. Further characterization show that the grain size of the films increases for a substrate temperature increase, whereas the electrical properties of $CuCrO_2$ thin films depend upon their crystalline orientation.

  • PDF

Surface Modification by Laser Deposition and Femtosecond Laser for Biomedical Applications (레이저증착과 펨토레이저를 이용한 생체의료분야의 표면처리응용)

  • Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.05a
    • /
    • pp.24-24
    • /
    • 2015
  • 최근 생체재료의 개발이 눈부시게 발전되고 생체적합성이 우수한 표면을 요구함에 따라 생체재료의 표면처리에 대한 연구가 활발히 진행되고 있다. Laser Deposition법은 항공기 부품제조 분야에 주로 사용되고 있으며 최근에 오하이오 주립대 타이타늄합금연구센터를 중심으로 표면처리에 관한 연구가 주로 이루어졌다. 특히 이를 이용하여 치과재료의 표면처리에 응용을 시도하였다. 치과에서 응용될 수 있는 경우는 주로 임플란트는 부분 또는 완전 무치악 환자의 보철수복에 사용되는 보철물의 제작등에 사용될 수 있으며 이중에서도 특히 생체용 임플란트의 표면처리응용으로 임플란트와 조직간의 접합성을 개선하는 표면처리법으로 연구되었다. 임플란트의 성공과 실패는 물성적인 측면에서 임플란트의 형태, 표면거칠기 및 표면처리방법, 초기하중 등에 의하여 좌우되며 임플란트 재료에 작용하는 응력차폐는 생체적합성을 좌우하는 큰 요인이 되고 있다. 이를 위하여 저 탄성계수합금을 설계하지만 하중을 버티는 강도가 낮아지는 단점이 있어 레이저증착법을 이용하여 임플란트재료인 Ti6Al4V합금에 탄성계수가 낮은 Ta, Nb등을 코팅하는 방법을 통하여 이를 해결하고자하는 시도가 이루어지고 있다. 이 방법은 최근의 3D 프린팅의 원리가 되고 있다. 따라서 발표에서는 Laser Deposition방법을 이용하여 치의학분야에서 응용되고 있는 예를 강연하고 응용 가능 분야에 대하여 토론 하고자한다. 또한 펨토레이저를 이용하여 생체합금의 표면처리는 생체활성화를 더욱 증진시키며 이를 위하여 많은 연구 수행되고 있다. 본 발표에서는 매식용 합금 표면에 펨토레이저를 이용하여 텍스춰링하여 세포가 잘 성장 할 수 있는 크기의 조절함으로써 기존의 표면처리와는 다른 효과를 얻을 수 있는 장점을 알아본다. 펨토레이저를 이용하면 여러 가지 형태의 텍스춰링이 가능하며 원형, 사각형등등 자유자제로 형태의 묘사가 가능하고 깊이 또한 쉽게 조절할 수 있는 장점이 있다. 지금까지는 표면 개질에 사용되는 레이저는 주로 Nd:YAG 레이저의 파장을 반으로 줄인 녹색레이저 (${\lambda}=532nm$)를 사용하거나, 자외선파장영역의 레이저를 사용하는 경우가 일반적으로 가장 보편화되었다. 이를 이용하여 제조된 Ti합금에 펨토 초(10-15 second) 펄스폭 대역을 갖는 레이저를 이용하여 나노크기의 미세 요철을 표면에 형성한 후, 나노튜브를 형성하여 그 표면특성의 변화를 알아보고 펨토레이저가 의료분야에 적용되고 있는 예를 살펴보고자 한다.

  • PDF

Remote Welding of Automobile Components using CO2 Laser and Scanner (자동차 부품의 원격 레이저 용접기술)

  • Suh, Jeong;Lee, Mun-Yong;Jung, Beong-Hun;Song, Mun-Jong;Kang, Hie-Sin;Kim, Jeong-O
    • Journal of Welding and Joining
    • /
    • v.26 no.5
    • /
    • pp.74-78
    • /
    • 2008
  • The laser welding of the car body and components has been spread in the automotive industry. The Nd:YAG laser welding system could be used in 3D welding with robot. However, this system cannot efficiently reduce the welding cycle time according to various welding sequences because the robot's moving time is same that of the resistant spot welding system. But the remote welding system with high power $CO_2$ laser and scanner makes it possible welding cycle time much faster than the robot laser welding system. In the $CO_2$ laser remote welding system, laser beam can be rapidly transferred to a workpiece by moving mirrors of scanner system. So, it makes reducing the cycle time of welding process and shaping various welding patterns easily. Therefore, in this paper, the characteristic of weld strength according to patterns of weld bead on $CO_2$ laser welding was investigated. Also, the relationship between shape of weld bead and value of tensile load was studied. Finally, the optimum remote welding condition for car bumper was investigated.

A Study on a KTP Crystal Laser System for a Cancer Using P.D.T. (KTP 크리스탈을 이용한 PDT용 레이저 시스템 개발)

  • Kim, Byoung-Mun;Nam, Hyo-Duk;Kim, Byoung-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.631-634
    • /
    • 2004
  • The method that exists in Photodynamic Therapy uses Photosensibility drug strongly Influencing tumour accumulation together with photochemical laser effect and makes the structure of tumour be localized and become extinct. The intracavity transformation of the Nd :YAP main radiation 1079 nm was Raman converted in barium nitrate crystal and the Stokes frequency (1216 nm) was doubled using KTP or RTA crystals. The LiF or Cr:YAG crystals are used for the Q-switch. The radiation Parameters were obtained at 100 Hz pump repetition frequency. The average power at 608 nm radiation with LiF and KTP was 700 mW at multi-mode generation. The 3-6 single 10-15 ns pulses were generated during one cycle of pumping. The doubling efficiency with RTA was two times more than with KTP. The cells of Ehrlich adenocarcinoma (0.1 ml) were i.m. implanted in hind thighs of ICR white non-imbred mice. The cells were preliminarily diluted in medium 199 in the ratio of 1 to 5. HpD was intravenous administered in a dose of 10 mg/kg. The left clean-shaven hind leg was irradiated with laser light 21-27 hours after the administration of the preparation. The right non-Irradiated leg of each animal served as a control. The animals with the transplanted tumor that were not injected with HpD sewed as a control to estimate the complex effect (HpD+ irradiation). Before the administration of HpD and on 3 and 4 days after irradiation the tumor size was measured and the percent of the tumor growth inhibition was calculated. The results of animal treatments has shown high efficiency of PDT method for cancer treatment by means 0.608 m high power pulse solid state laser.

  • PDF