• Title/Summary/Keyword: Nd:YAG laser welding

Search Result 263, Processing Time 0.027 seconds

The Weldability and Mechanical Behavior of Medium Carbon Steel in CW Nd:YAG Laser Welding

  • Bang, H.S.;Kim, Y.P.;Katayama, S.;Chang, W.S.;Lee, C.W.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.1
    • /
    • pp.15-20
    • /
    • 2002
  • This paper describes the weldability and mechanical behavior of JIS S45C medium carbon steel (corresponding to KS SM45C and SAE 1045) for machine structures in CW Nd:YAG laser welding. In general, medium carbon steels have a limited application to the industrial fields in spite of good mechanical characteristics. This is due to welding difficulty because of the high carbon contents and impurities in this material. Therefore, in this study the laser weldability of medium carbon steel with adjusted contents of S and P has been investigated in order to extend the application to medium carbon steels. Several experiments and numerical simulations have been conducted to determine the characteristics of mechanical behavior in CW Nd:YAC laser welds. The results of the simulations concur with the experiment results. From the result of this study, the application possibility of CW Nd:YAG laser welding to medium carbon steel has been confirmed. Also, the appropriateness of mechanical behavior simulation has been verified to analyze and predict the welding phenomena.

  • PDF

Welding Characteristics of Inconel 600 using a high power CW Nd:YAG Laser (고출력 CW Nd:YAG 레이저를 이용한 인코넬 600의 용접 특성)

  • Yoo Young-Tae;Shin Ho-Jun;Lim Kie-Gon
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.6
    • /
    • pp.119-126
    • /
    • 2004
  • The welding characteristics of Inconel 600 Alloy using a continuous wave Nd:YAG laser are experimentally investigated. The major process parameters studied in the present laser welding experiment were the positions of focus, laser power and travel speed of laser bean We measured the fusion zone size and its shape using an optical microscope for the observation of cross-sectional area. We performed two tests regarding the tension and the micro hardness for welding quality estimation. Then we measured residual stress in welds by electronic speckle pattern interferometry(ESPI). In conclusion the optimum butt welding process parameters were 0.5mm focus position, 1.6kW laser power, 1m/min travel speed and 5.5$\ell$/min assist gas discharge.

Optimization of Pulsed Nd:YAG Laser Welding Conditions for Sealing of Lithium-ion Battery (리튬이온전지의 밀봉용접을 위한 펄스 Nd:YAG레이저 용접조건의 최적화)

  • Kim, Jong-Do;Yoo, Seung-Jo;Kim, Jang-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.623-628
    • /
    • 2006
  • Laser material processing is a very fast advancing technology for various industrial applications. because of many advantages. Its major advantage of less and controlled heat input has been exploited successfully for the very critical application of aluminium alloy welding. This study suggested the occurrence source of weld-defects and its solution methods in a welding of lithium ion battery by pulsed Nd:YAG laser. In experiment. battery case has changed over joint geometry from welding of side position to flat one. In the case of a electrolyte injection hole in order to seal it. welding is carried out after pressing Al ball. At this time. an eccentric degree. contact length and gap are worked as a major parameters. As improving the method of Al ball pressing. it was able to reduce an eccentricity. increase the contact length and decrease gap. As a results of a experiment. a sound weld bead shape and crack-free weld bead can be obtained.

Optimization of Pulsed Nd:YAG Laser Welding Conditions for Sealing of Lithium-ion Battery (리튬이온전지의 밀봉용접을 위한 펄스 Nd:YAG레이저 용접조건의 최적화)

  • Kim, Jong-Do;Yoo, Seung-Jo
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.339-343
    • /
    • 2005
  • Laser material processing is a very fast growing technology for various industrial applications, because of many advantages. Its major advantage of less and controlled heat input has been exploited successfully for the very critical application of aluminium alloy welding. This study suggested the occurrence source of weld-defects and its solution methods in a welding of lithium ion battery by pulsed Nd:YAG laser. In experiment, battery case has changed over joint geometry from welding of side position to flat one. In case of a electrolyte injection hole in order to seal it, welding is carried out after pressing Al ball. At this time, an eccentric degree, contact length and gap are worked as a major parameters. As improving the method of Al ball pressing, it was able to reduce an eccentricity, increase the contact length and decrease gap. As a results of a experiment, a sound weld bead shape and crack-free weld bead can be obtained.

  • PDF

A Study on the Characteristics of Repair Welding for Mold Steel using Continuous Wave Nd:YAG Laser (연속파형 Nd:YAG 레이저를 이용한 금형강의 보수용접 특성에 관한 연구)

  • Yoo, Young-Tae;Shin, Ho-Jun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.11
    • /
    • pp.7-16
    • /
    • 2010
  • In this study, wire was used as the filler material for the laser repair welding, and the phenomenon in which the supplied filler material was melted and beaded down into the specimen was examined with varying laser powers and welding speeds. The optimal processing condition was found to be the laser power of 1,300 W, the welding speed and feed wire supply speed of 0.5 ml/in and the defocused distances of +2mm. At this time, the heat input(E) was $65{\sim}75\;J/mm^2$, and no internal defect occurred. When repair welding was carried out as the optimal processing for the part that had an external defect with the radius of 2mm, the filler metal was melted, resulting in the volume smaller than the defect part and thus causing the part unfilled. Therefore, it was found to be necessary to carry out repair welding two to three times by multiple passes rather than does it only once by single pass.

Dissimilar Metal Welding of SM45C and STS304 by means of CW Nd:YAG Laser (CW Nd:YAG 레이저를 이용한 SM45C와 STS304의 이종금속용접)

  • 신호준;유영태;임기건;안동규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1369-1375
    • /
    • 2004
  • For many years and primarily for economical reasons, Dissimilar Metal Welds have been used as transition joints in a variety of equipment and applications. But Dissimilar Metal Welds have several fabrication and metallurgical drawbacks that can often lead to in-service failures. For example, the most pronounced fabrication faults are hot cracks. Laser welding techniques have been characterised for various materials. In this paper, the laser weldability of STS304 stainless steel and SM45C at dissimilar metal welds using a continuous wave Nd:YAG laser are experimentally investigated. An experimental study was conducted to determine effects of welding parameters, on eliminating or reducing the extent welding zone formation at dissimilar metal welds and to optimize those parameters that have the most influence parameters such as focus length, power, beam speed, shielding gas, and wave length of laser were tested

  • PDF

Study on the porosity formation in the lap joint CW Nd:YAG laser welds of 6K21 aluminum alloy sheet (6K21 알루미늄 판재의 레이저 겹치기 용접 시 발생하는 기공에 관한 연구)

  • Yang, Hyun-Seok;Lee, Kyoung-Don;Kim, Yong;Park, Ki-Young
    • Laser Solutions
    • /
    • v.11 no.3
    • /
    • pp.16-20
    • /
    • 2008
  • The lap Joint welding of 6K21 aluminum sheets by Nd:YAG laser were performed with an aluminum 5183 filler wire or without a filler wire. The porosity of laser welding beads were observed through an optical microscope and X-ray photography with various levels of welding speed and gap size. The porosity was observed in the gap between upper and lower sheet near a heat affected zone when autogenous welding. Decrease of welding speed and use of AA5183 filler wire reduced porosity significantly.

  • PDF