• Title/Summary/Keyword: Nd:YAG laser beam welding

Search Result 61, Processing Time 0.024 seconds

Investigation of Zircaloy-4 weldability using a pulsed Nd:YAG laser (펄스형 Nd:YAG 레이저를 이용한 지르칼로이-4 용접특성 조사)

  • 김수성;김덕현;김철중;이종민
    • Journal of Welding and Joining
    • /
    • v.9 no.1
    • /
    • pp.23-31
    • /
    • 1991
  • Laser beam weldability of zircaloy-4was investigated using a pulsed Nd: YAG laser of 200W average power. Mechanical properties of laser and GTA bead-on-plate welded zircaloy-4 test specimens were compared. The influence of plasma generated during laser welding was analyzed and optimum laser welding parameters were investigated.

  • PDF

T-joint Welding Characteristics of Multi-thin Plate Dissimilar Thickness of SS41 of Automobile Battery by using Nd:YAG Laser (Nd:YAG 레이저를 이용한 자동차 배터리용 SS41 다층박판 이종두께 T형상 용접 특성)

  • Yang, Yun-Seok;Hwang, Chan-Youn;Yoo, Young-Tea
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.10
    • /
    • pp.1078-1088
    • /
    • 2012
  • In this paper, we present research experimental results about the different thickness T-joint welding of the high power continuous wave(CW) Nd:YAG laser for the secondary battery of a vehicle. Although the conventional method used for the secondary battery is a argon TIG welding, we utilize a laser welding to improve Tungsten Inert Gas(TIG) welding's weakness. The laser, which has a couple of advantage such as aspect ratio, low Heat Affected Zone(HAZ), good welding quality and fast productivity utilized in this work is a CW Nd:YAG laser. In order to observe laser welding sections, we used a optical microscope. Through the analysis of the metallographic, hardness, aspect ratio, and heat input, we obtained the desired data in condition of 1800 W laser beam power and 1.8 m/min and 2.0 m/min laser beam travel speeds. In order to compare electric resistances of the argon TIG welding and laser welding, we made an actual battery and the electric resistance of the laser welding is reduced by 40~45% comparing with the argon TIG welding.

A study on the Optimum Conditions of Nd:YAG LBW for Zircaloy-4 End Cap Closure By Optical Fiber Transmission (광섬유전송에 의한 Zircaloy-4 봉단마개밀봉의 Nd:YAG LBW의 최적조건에 관한 연구)

  • 김수성;김웅기;이영호
    • Journal of Welding and Joining
    • /
    • v.15 no.6
    • /
    • pp.85-95
    • /
    • 1997
  • This study is to investigate the optimum conditions of Nd:YAG laser beam welding for Zircaloy-4 end cap closure by optical fiber transmission. Laser welding parameters which affect the penetration depth and bead width were experimentally examined using the various beam radius by the beam quality analyzer, joint geometries of end cap and the laser parameters which mean pulse width, repetition rate and pulse energy. Also, an optimum welding speed and the effect of assistant gas with varying the flow rate of He were investigated. We found that the laser average power for the end cap welding will be 230W and rotation speed must not exceed 8 RPM, the best position of focus using optical fiber with 600.mu.m will be 2 to 3mm below the surface of the material.

  • PDF

A Study on the Butt Welding of Zircaloyf Sheets Using Nd:YAG Laser (Nd-YAG 레이저를 이용한 Zircaloy-4 판재의 맞대기 용접에 관한 연구)

  • 황용화;고진현
    • Proceedings of the KWS Conference
    • /
    • 2000.04a
    • /
    • pp.139-143
    • /
    • 2000
  • Laser beam weldability of Zircaloy-4 was investigated using a pulsed Nd:YAG laser of 550W average power. Mechanical properties and microstructure of laser butt welded Zircaloy-4 test specimens were examined. The influence of laser generated during laser welding was analyzed and optimum laser welding parameters were investigated.

  • PDF

Study of Welding Characteristics of Inconel 600 Alloy using a Continuous Wave Nd:YAG Laser Beam (연속파형 Nd:YAG 레이저를 이용한 인코넬 600 합금의 맞대기 용접 특성 연구)

  • Song, Seong-Wook;Yoo, Young-Tae;Shin, Ho-Jun
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1154-1159
    • /
    • 2004
  • Laser beam welding is increasingly being used in welding of structural steels. The laser welding process is one of the most advanced manufacturing technologies owing to its high speed and deep penetration. The thermal cycles associated with laser welding are generally much faster than those involved in conventional arc welding processes, leading to a rather small weld zone. Experiments are performed for Inconel 600 plates changing several process parameter such as laser power, welding speed, shielding gas flow rate, presence of surface pollution, with fixed or variable gap and misalignment between plate and plate, etc. The follow conclusions can be drawn that laser power and welding speed have a pronounced effect on size and shape of the fusion zone. Increase in welding speed resulted in an increase in weld depth/ aspect ratio and hence a decrease in the fusion zone size. The penetration depth increased with the increase in laser power . Welding characteristics of austienite Inconel 600 using a continuous wave Nd:YAG laser are experimentally investigated. This paper describes the weld ability of inconel 600 for machine structural use by Nd:YAG laser.

  • PDF

A Study on the Welding Behavior of A3003 Aluminium Alloy Thin Sheet by Nd : YAG Laser Beam (박판 A3003 Al합금의 Nd : YAG 레이저빔 용접에 관한 연구)

  • 허인석;김병철;김도훈;김진수;이한용
    • Laser Solutions
    • /
    • v.4 no.1
    • /
    • pp.29-38
    • /
    • 2001
  • This work was carried out to investigate the welding behavior of thin A3003 Al alloy sheets by Nd : YAG laser beam. Considering bead shape and mechanical properties, the laser pulse shapes selected were two kinds of 2-division and 3-division by varying power level and pulse duration. In order to obtain optimum conditions, the factorial design method and central composite design method were applied. Tensile test, optical microscopy, micro hardness test and TEM analysis were performed. Due to the annealing caused by thermal effect during laser welding, precipitates were coarsended. The HAZ was softened and failed during tensile test. The hardness of HAZ was lower than that of base metal, since the heat input relieved the work hardening effect and caused grain growth.

  • PDF

Finite element analysis for prediction of bead shape of Nd:YAG laser butt welding (Nd:YAG 레이저 맞대기 용접의 비드형상 예측에 관한 유한요소해석)

  • Kim, Kwan-Woo;Nam, Gi-Jeong;Lee, Jae-Hoon;Suh, Jeong;Cho, Hae-Yong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.137-146
    • /
    • 2008
  • Nd:YAG pulse laser welding of stainless steel plate was simulated to find welding condition by using commercial finite element code MARC. Due to geometric symmetry, a half model of AISI 304 stainless steel plate was considered and user subroutines were applied to boundary condition for the heat transfer. Material properties such as conductivity, specific heat, mass density and latent heat were given as a function of temperature. As results, Three dimensional heat source model for pulse laser beam conditions of butt welding has been designed by the comparison between the finite element analysis results and experimental data on AISI 304 stainless steel plate. Nd:YAG laser welding for AISI 304 stainless steel was successfully simulated and it should be useful to determine optimal welding condition.

ButWelding Characteristics of SM45C and SUS 304 using a Nd:YAG laser (SM45C와 SUS304의 Nd:YAG 레이저 맞대기용접특성)

  • Yoo, Young-Tae;Ro, Kyoung-Bo;Shin, Ho-Jun;Kim, Ji-Hwan;Oh, Young-Seok
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1302-1308
    • /
    • 2003
  • Welding characteristics of austienite 304 stainless steel and SM45C using a continuous wave Nd:YAG laser are experimentally investigated. Laser beam welding is increasingly being used in welding of structural steels. The laser welding process is one of the most advanced manufacturing technologies owing to its high speed and deep penetration. This paper describes the weld ability of SM45C carbon steel and austienite 304 stainless steel for machine structural use by Nd:YAG laser.

  • PDF

Absorption Characteristics of Amorphous Metal during Processing with Nd:YAG laser (Nd:YAG 레이저를 이용한 비결정질 재료의 용접 시 레이저의 흡수 거동)

  • 이건상
    • Laser Solutions
    • /
    • v.2 no.1
    • /
    • pp.43-50
    • /
    • 1999
  • For the conventional welding method. the high heat transfer makes the crystallized zone of the work material unavoidable. Whereas the laser is able to weld the amorphous metal without a crystallized zone, because heat transfer is limited within a very small restricted volume. In this paper, the possibilities and the limits of the laser welding were studied to utilize the advantageous properties of amorphous metal foils.

  • PDF

Development of a pulsed Nd:YAG laser materials processing system (정밀 용접용 펄스형 Nd:YAG 레이저 가공기 개발)

  • 김덕현;정진만;김철중;이종민
    • Journal of Welding and Joining
    • /
    • v.9 no.1
    • /
    • pp.32-39
    • /
    • 1991
  • A 200W pulsed Nd: YAG laser for fine welding was developed. The important laser parameters such as laser peak power, average power, pulse width, and pulse energy for welding were studied. In order to obtain the sufficient laser power density for welding, thermal lensing effects were analyzed and a laser resonator with laser beam divergence was designed. The power supply unit was designed to support up to 7kW input. The pulse control unit was developed using a GTO thyristor and could control over 100kW input power to obtain 3.5kW peak power laser. Also due to the GTO thyristor the pulse width could be varied continuously from 0.1 to 20 msec and maximum repetition rate was as high as 300pps.

  • PDF