• Title/Summary/Keyword: Nb doping

Search Result 124, Processing Time 0.03 seconds

Preparation of CdS-pillared $H_4Nb_6O_7$ and Photochemical Reduction of Nitrate under Visible Light Irradiation

  • Tawkaew, Sittinun;Fujishiro, Yoshinobu;Uchida, Satoshi;Sato, Tsugio
    • The Korean Journal of Ceramics
    • /
    • v.6 no.1
    • /
    • pp.43-46
    • /
    • 2000
  • $H_4Nb_6/O_{17}$/CdS nanocomposites which intercalated CdS particles, less than 0.8nm thickness, in the interlayer of $H_4Nb_6/O_{17}$ were prepared by the successive ion exchange reactions of $H_4Nb_6/O_{17}$ with $Cd^{2+}$ and $C_3H_7NH_3_+$, followed by the reaction with $H_2S$ gas. $H_4Nb_6/O_{17}$/CdS photocatalytically reduced $NO_3$ ̄ to $NO_2$ ̄ and $NH_3$in the presence of sacrificial hole acceptor such as methanol under visible light irradiation (wavelength>400nm), although unsupported CdS showed no noticeable photocatalytic activity for $NO_3$ ̄ reduction. The catalytic activity of $H_4Nb_6/O_{17}$/CdS greatly enhanced with co-doping of Pt particles in the interlayer.

  • PDF

Combinatorial studies on the work function characteristics for Nb or Zn doped indium-tin oxide electrodes

  • Heo, Gi-Seok;Kim, Sung-Dae;Park, Jong-Woon;Lee, Jong-Ho;Kim, Tae-Won
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.159-159
    • /
    • 2008
  • Indium-tin oxides (ITO) films have been widely used as transparent electrodes for optoelectronic devices such as organic light emitting diodes (OLEDs), photovoltaics, touch screen devices, and flat-paneldisplay. In particular, to improve hole injection efficiency in OLEDs, transparent electrodes should have high work-function besides their transparency and low resistivity. Nevertheless, few studies have been made on engineering the work function of ITO for use as an efficient anode. In this study, the effects of a wide range of Nb or Zn doping rate on the changes in work functions of ITO anode were investigated. The Nb or Zn doped ITO films were fabricated on glass substrates using combinatorial sputtering system which yields a linear composition spread of Nb or Zn concentration in ITO films in a controlled manner by co-sputtering two targets of ITO and Nb2O5 or ITO and ZnO. We have also examined the resistivity, transmittance, and other structural properties of the Nb or Zn-doped ITO films. Furthermore, OLEDs employing Nb or Zn-doped ITO anodes were fabricated and the device performances were investigated concerned with the work function changes.

  • PDF

Photo- and Cathod-luminesent Properties of $YNbO_4$ : Bi Phosphors ($YNbO_4에\;Bi^{3+}$가 도핑된 형광체의 빛발광 및 저전압 음극선발광 특성)

  • 한정화;김현정;박희동
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.3
    • /
    • pp.245-250
    • /
    • 1998
  • Field emission display (FED) is currently being explored as a potential flat panel display technology. The need of new materials for low voltage blue phosphors for FED focused our attention on the $Y_2O_3-Nb_2O_5$ sys-tem. Yttrium niobate doped with $Bi^{3+}$ was prepared by solid state reaction technique and the optimization of the luminescent properties with a control of $Bi^{3+}$ amounts and Y/Nb ratio was studied. Under 254 nm and low voltage electron excitations $Bi^{3+}-activated$ YNbO4 phosphors showed a strong and relatively narrow blue em-ission band with a range of 420 to 450 nm, Especially 0.4wt% $Bi^{3+}\;doped\;YNbO_4$ phosphors with Y/Nb ratio of 1/1 showed the maximum emission intensity. Under low voltage electron excitation maximum emission in-tensity appeared at the Y/Nb ratio of 0.495/0.505.

  • PDF

Dielectric and Ferroelectric Properties of Nb Doped BNT-Based Relaxor Ferroelectrics

  • Maqbool, Adnan;Hussain, Ali;Malik, Rizwan Ahmed;Zaman, Arif;Song, Tae Kwon;Kim, Won-Jeong;Kim, Myong-Ho
    • Korean Journal of Materials Research
    • /
    • v.25 no.7
    • /
    • pp.317-321
    • /
    • 2015
  • The effects of Nb doping on the crystal structure, microstructure, and dielectric ferroelectric and piezoelectric properties of $(Bi_{0.5}Na_{0.5})_{0.935}Ba_{0.065}Ti_{(1-x)}Nb_xO_3-0.01SrZrO_3$ (BNBTNb-SZ, with ${\chi}=0$, 0.01 and 0.02) ceramics have been investigated. X-ray diffraction patterns revealed that all ceramics have a pure perovskite structure with tetragonal symmetry. The grain size of the ceramics slightly decreased and a change in grain morphology from square to spherical shape was observed in the Nb-doped samples. The maximum dielectric constant temperature ($T_m$) increases with increasing amount of Nb; however, ferroelectric-relaxor transition temperature ($T_{F-R}$) and maximum dielectric constant (${\varepsilon}_m$) values decrease gradually. Nb addition disrupted the polarization hysteresis loops of the BNBT-SZ ceramics by leading a reduction in the remnant polarization coercive field and piezoelectric constant.

Effect of Li2CO3 Doping on Phase Transition and Piezoelectric Properties of 0.96K0.5Na0.5NbO3-0.04SrTiO3 Ceramics (0.96K0.5Na0.5NbO3-0.04SrTiO3 세라믹스의 상전이와 압전 특성에 대한 Li2CO3 도핑 효과)

  • Jae Young Park;Trang An Duong;Sang Sub Lee;Chang Won Ahn;Byeong Woo Kim;Hyoung-Su Han;Jae-Shin Lee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.5
    • /
    • pp.513-519
    • /
    • 2023
  • It was reported that a tetragonal phase can be stabilized with maintaining good piezoelectric properties when Na0.5K0.5NbO3 (KNN) is modified with 0.06 mol SrTiO3. However, such a high amount of SrTiO3 leads not only to poor sinterability but low Curie temperature (TC). To maintain high TC with good piezoelectric properties in KNN-based lead-free piezoelectric ceramics, this study investigates the effect of Li-doping on the dielectric and piezoelectric properties of 0.96Na0.5K0.5NbO3-0.04SrTiO3 (KNN-4ST) ceramics. As a result, the orthorhombic-tetragonal phase transition was observed at 2 mol% Li2CO3 modified KNN-4ST ceramics, whose TC, d33 and kp values are 328℃, 165pC/N and 0.33, respectively.

Single crystals growth and properties of $LiNbO_3$ doped with MgO or ZnO : (II) The electrical and optical properties (MgO 또는 ZnO를 첨가한 $LiNbO_3$단결정 성장 및 특성 : (II) 전기적 및 광학적 특성)

  • Cho, Hyun;Shim, Kwang-Bo;Auh, Keun-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.4
    • /
    • pp.532-542
    • /
    • 1996
  • The electrical and optical properties of the annealed $LiNbO_{3}$ single crystal with congruently melting composition and MgO or ZnO doped $LiNbO_{3}$ single crystal grown by the FZ method. The electrical and optical properties such as electrical conductivity, dielectric constant (Curie temperature), electro-mechanical coupling factor, optical transmittance and refractive indices of the grown crystals were measured and the nonlinear refractive indices of the grown crystals were calculated theoretically. The doping effects of MgO and ZnO were investigated by comparing the electrical and optical properties of the undoped $LiNbO_{3}$ single crystal and those of the $LiNbO_{3}$ single crystals doped with MgO or ZnO.

  • PDF

Neutral Beam assisted Chemical Vapor Deposition at Low Temperature for n-type Doped nano-crystalline silicon Thin Film

  • Jang, Jin-Nyeong;Lee, Dong-Hyeok;So, Hyeon-Uk;Yu, Seok-Jae;Lee, Bong-Ju;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.52-52
    • /
    • 2011
  • A novel deposition process for n-type nanocrystalline silicon (n-type nc-Si) thin films at room temperature has been developed by adopting the neutral beam assisted chemical vapor deposition (NBa-CVD). During formation of n-type nc-Si thin film by the NBa-CVD process with silicon reflector electrode at room temperature, the energetic particles could induce enhance doping efficiency and crystalline phase in polymorphous-Si thin films without additional heating on substrate; The dark conductivity and substrate temperature of P-doped polymorphous~nano crystalline silicon thin films increased with increasing the reflector bias. The NB energy heating substrate(but lower than $80^{\circ}C$ and increase doping efficiency. This low temperature processed doped nano-crystalline can address key problem in applications from flexible display backplane thin film transistor to flexible solar cell.

  • PDF