• 제목/요약/키워드: Nb$_3$Sn

검색결과 123건 처리시간 0.029초

희석 파라미터법에 의한 주석슬랙중 Ta$_2O_5,\;Nb_2O_5,\;SnO_2$ 및 ZrO$_2$의 X-선형광분석에 관한 연구 (A Study on X-Ray Fluorescence Analysis of Ta$_2O_5,\;Nb_2O_5,\;SnO_2$ and ZrO$_2$ in Tin-slag Samples)

  • 김영상
    • 대한화학회지
    • /
    • 제29권3호
    • /
    • pp.265-270
    • /
    • 1985
  • 희석 파라미터법을 이용한 X-선 형광분광법으로 주석슬랙중 Ta$_2$O$_5$, Nb$_2$O$_5$, SnO$_2$ 및 ZrO$_2$를 정량하였으며 그들의 분석결과를 표준검정곡선법으로 얻은 결과들과 비교하였다. 주석슬랙 시료와 주석슬랙과 비슷한 조성을 갖는 한개의 표준시료를 적당한 희석제(La$_2$O$_3$)로 1 : 1, 1 : 2, 1 : 3, 1 : 4로 각각 희석하였다. 원시료와 희석된 시료의 X-선 세기를 측정하여 희석 파라미터항이 포함된 계산식을 이용하여 함량을 계산하였다. 그 결과 분석값은 표준검정곡선법에 의한 기준값들과 잘 일치하고 있음을 확인하였다.

  • PDF

Unusual Electrical Transport Characteristic of the SrSnO3/Nb-Doped SrTiO3 Heterostructure

  • De-Peng Wang;Rui-Feng Niu;Li-Qi Cui;Wei-Tian Wang
    • 한국재료학회지
    • /
    • 제33권6호
    • /
    • pp.229-235
    • /
    • 2023
  • An all-perovskite oxide heterostructure composed of SrSnO3/Nb-doped SrTiO3 was fabricated using the pulsed laser deposition method. In-plane and out-of-plane structural characterization of the fabricated films were analyzed by x-ray diffraction with θ-2θ scans and φ scans. X-ray photoelectron spectroscopy measurement was performed to check the film's composition. The electrical transport characteristic of the heterostructure was determined by applying a pulsed dc bias across the interface. Unusual transport properties of the interface between the SrSnO3 and Nb-doped SrTiO3 were investigated at temperatures from 100 to 300 K. A diodelike rectifying behavior was observed in the temperature-dependent current-voltage (IV) measurements. The forward current showed the typical IV characteristics of p-n junctions or Schottky diodes, and were perfectly fitted using the thermionic emission model. Two regions with different transport mechanism were detected, and the boundary curve was expressed by ln I = -1.28V - 13. Under reverse bias, however, the temperature- dependent IV curves revealed an unusual increase in the reverse-bias current with decreasing temperature, indicating tunneling effects at the interface. The Poole-Frenkel emission was used to explain this electrical transport mechanism under the reverse voltages.

In situ 법에 의한 Cu-Nb3Sn 복합재료선재의 초전도특성과 이에 미치는 Ti의 영향(I) (Superconducting Properties of in situ Formed Multifilamentary Cu - Nb3Sn Composites and the Effects of Ti Addition on the Superconducting Properties (I))

  • 박현순;서수정;이은덕;안재민
    • 열처리공학회지
    • /
    • 제6권1호
    • /
    • pp.17-25
    • /
    • 1993
  • The Cu - $Nb_3Sn$ composites wire as a superconducting material was prepared by in situ method as follow: Cu - 15wt.% Nb alloys which were melted in a high -frequency induction furnace and casted in bar were cold-worked up to the final diameter of 0.24 mm, electroplated with Sn, pre-treated in two steps and then diffused at $550{\sim}650^{\circ}C$ for 24 ~ 96 hrs. The overall $J_c$ and $T_c$ of the specimens were measured by the four point-probe method at 10 K in the magnetic field of 0 Tesla. The overall $J_c$ of the composites wire which diffused at $550^{\circ}C$ after pre-treating in two steps were generally higher than those of the wire at either $600^{\circ}C$ or $650^{\circ}C$. For the specimens diffused at $550^{\circ}C$, the overall $J_c$ were increased until 72 hrs. of diffusion time and then decreased. However, in case of diffusion at $600^{\circ}C$ and $650^{\circ}C$, the overall $J_c$ were gradually decreased from the beginning. The maximum overall $J_c$ obtained in this experiment was $1.3{\times}10^4\;A/cm^2$, which was measured for the specimen diffused at $550^{\circ}C$ for 72 hrs. When the specimens were diffused at $550^{\circ}C$ for 72 hrs, after pre-treating, the measured critical temperature, $T_c$ was 16.19 K. Similar $T_c$ value were obtained in other specimens regardless of diffusion time and temperature.

  • PDF

Comparisons and analysis on the prototype EU-DEMO TF CICC with Nb3Sn cable

  • Kwon, Soun Pil
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제19권4호
    • /
    • pp.31-39
    • /
    • 2017
  • European R&D on designing their version of a DEMO fusion tokamak has recently resulted in the testing of a prototype $Nb_3Sn$ Cable-in-Conduit Conductor (CICC) for the DEMO TF coil. The characteristics and reported results of low temperature performance tests with the prototype CICC sample are compared with those from CICC samples incorporating other recent $Nb_3Sn$ cable designs. The EU-DEMO TF CICC prototype shows performance characteristics similar to that of the ITER CS CICC with short twist pitch. This is a first for a CICC sample that does not have a circular cross section. Assessment of its internal magnetostatic self-field suggests that a reduction in the internal self-field due to the rectangular geometry of the EU-DEMO TF CICC prototype compared to one with a circular geometry may have contributed to the performance characteristics showing current sharing temperature ($T_{cs}$) initially increase then stabilize with repeated electromagnetic loading, similarly to ITER CS CICC results. However, constraints on the internal self-field are not a sufficient condition for this $T_{cs}$ characteristic to occur.

Mechanical and Oxidation Properties of Cold-Rolled Zr-Nb-O-S Alloys

  • Lee, Jong-Min;Nathanael, A.J.;Shin, Pyung-Woo;Hong, Sun-Ig;Jeong, Yong-Hwan
    • 한국재료학회지
    • /
    • 제21권3호
    • /
    • pp.161-167
    • /
    • 2011
  • The stress-strain responses and oxidation properties of cold-rolled Zr-1.5Nb-O and Zr-1.5Nb-O-S alloys were studied. The U.T.S. (ultimate tensile strength) of cold-rolled Zr-1.5Nb-O-S alloy with 160 ppm sulfur (765 MPa) were greater than that of Zr-1Nb-1Sn-0.1Fe alloy (750 MPa), achieving an excellent mechanical strength even after the elimination of Sn, an effective solution strengthening element. The addition of sulfur increased the strength at the expense of ductility. However, the ductile fracture behavior was observed both in Zr-Nb-O and Zr-Nb-O-S alloys. The beneficial effect of sulphur on the strengthening was observed in the cold rolled Zr-1.5Nb-O-S alloys. The activation volume of cold-rolled Zr-1.5Nb decreased with sulfur content in the temperature region of dynamic strain aging associated with oxygen atoms. Insensitivity of the activation volume to the dislocation density and the decrease of the activation volume at a higher temperature where the dynamic strain aging occurs support the suggestion linking the activation volume with the activated bulge of dislocations limited by segregation of oxygen and sulfur atoms. The addition of sulfur was also found to improve the oxidation resistance of Zr-Nb-O alloys.

습식방법에 의한 $SnO_2$ 반도체 가스센사 제조 (Preparation of $SnO_2$ Semiconducting Gas Sensor by Wet Process)

  • 전병식;김홍대;최병현;최성근
    • 한국세라믹학회지
    • /
    • 제23권3호
    • /
    • pp.53-61
    • /
    • 1986
  • A gas sensor which has been made by wet process had fabricated by coating each of the mixture on alumina tube and firing at 85$0^{\circ}C$ for 3hrs. A gas concentration such $H_2$, CO, $C_3H_8$, $C_2H_2$ and $CH_4$ vs its detection voltage characteristics has been in-vestigated on $SnO_2-In_2O_3-MgO$ system doped with PdO, $La_2O_3$, $ThO_2$, NiO and $Nb_2O_5$ The optimum sensitivity composition for various gases were 90w/o $SnO_2$-9w/o $In_2O_3$-1w/o MgO for $H_2$, $C_2H_2$ CO and $C_3H_8$ and 95w/o $SnO_2$-4w/o $In_2O_3$-1w/o MgO for $CH_4$. The sample which has been made by wet process than dry process had predominated sensitivity for each gases and particle size of the sample coprecipitated with PH=9 was 0.1${\mu}{\textrm}{m}$ The $SnO_2$-In2_O_3-MgO$ system doped with 2w/o $Nb_2O_5$ and NiO was the most sensitive for $H_2$ and $C_2H_2$ gas. In $SnO_2$-In2_O_3-MgO$ system doped with $ThO_2$ the sensitivity of $H_2$ gas was decreased but CO gas was in-creased when dopant con was increased.

  • PDF

Dielectric and piezoelectric properties of lead-free $(Na_{0.5}K_{0.5})NbO_3$-Ba(Ti, Sn)$O_3$ ceramics

  • Cha, Yoo-Jeong;Kim, Chang-Il;Jeong, Young-Hun;Lee, Young-Jin;Paik, Jong-Hoo
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.30-30
    • /
    • 2008
  • Lead-free piezoelectric ceramics 0.97$(Na_{0.5}K_{0.5})NbO_3$-0.03Ba$(Ti_{1-x}Sn_x)O_3$ [NKN-BTS-x] ceramics doped with 1 mol% $MnO_2$ have been fabricated by a sintering technique with muffling. The $MnO_2$-doped NKN-BTS-x ceramics with x$\leq$0.2 have pure orthorhombic perovskite structure at room temperature. The dense microstructure was developed with grain growth as an increase of amount of Sn. Moreover, the addition of Sn was found to have a significant influence on piezoelectric properties. In particular, the $MnO_2$-doped NKN-BTS-0.1 ceramics showed improved piezoelectric properties of piezoelectric constant ($d_{33}$=145pC/N), relatively large electromechanical coupling factor ($k_p$=43%), dielectic constant (${\varepsilon}^T_{33}/{\varepsilon}_0$=676) dielectric loss (tan$\delta$=1.3%).

  • PDF

핵연료 피복관용 Zr신합금의 석출물 특성 (Characterization of Precipitates in New Zr base Alloys for Fuel Cladding)

  • 정용환
    • 한국재료학회지
    • /
    • 제6권6호
    • /
    • pp.585-588
    • /
    • 1996
  • 여러 가지 Zr합금에서 생성되는 석출물의 특성을 규명하기 위하여 시편을 $600^{\circ}C$에서 1시간 동안 열처리 한후 EDX가 부착된 TEM을 이용하여 석출물에 관한 연구를 수행하였다. Zr1.4Sn0.2Fe0.1Cr 합금에서는 두 종류의 석출물이 생성되는데 하나는 석출물의 대부분을 차지하는 HCP 구조으 Zr(Cr, Fe)2 석출물로서 이는 둥근 형태를 유지하며 결정립내나 결정립계에 관계없이 널리 분산되어 분포된다. 다른 하나의 석출물은 극히 일부에서만 관찰되는 Zr2(Fe, Si)성분의 석출물로서 이는 tetragonal 구조를 갖는다. Zr0.5Nb0.6Fe0.3V 합금에서는 tetragonal (Zr, Nb)2(Fe, V) 석출물이 형성되며, Nb이 1.0 wt.% 첨가된 Zr1.0Nb0.6Fe0.3V 합금에서는 HCP 구조의 (Zr, Nb)(Fe, V)2 석출물과 BCC 구조인 $\beta$-Zr이 생성된다. Zr1.0Nb0.6Fe0.3V합금을 제외하고는 대부분의 합금에서 석출물은 약 1.0$\mu\textrm{m}$의 크기를 나타냈다. 합금 조성이 다를 경우에 석출물 크기와 35$0^{\circ}C$ 부식 특성과는 부식 특성과는 연관성이 없는 것로 나타났다.

  • PDF

핵연료피복관용 Zr합금의 석출물 조성 및 결정구조에 관한 연구

  • 정용환;김경호;김창호;김영석;국일현
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 추계학술발표회논문집(2)
    • /
    • pp.539-544
    • /
    • 1996
  • 핵연료 피복관용 신합금으로 개발되고 있는 여러 가지 Zr합금에서 생성되는 석출물의 특성을 규명하기 위하여 EDX가 부착된 TEM을 이용하여 석출물에 관한 연구를 수행하였다. Zrl.4Sn0.2Fe0.1Cr 합금에서는 두 종류의 석출물이 생성되는데 하나는 석출물의 대부분을 차지하는 HCP 구조의 Zr(Cr,Fe)$_2$ 석출물로서 이는 둥근 형태를 유지하며 결정립내나 결정립계에 관계없이 널리 분산되어 분포된다. 다른 하나의 석출물은 극히 일부에서만 관찰되는 Zr$_2$(Fe,Si)성분의 석출물로서 이는 tetragonal 구조를 갖는다. Zr0.5Nb0.6Fe0.3V 합금에서는 tetragonal (Zr,Nb)$_2$(Fe,V)석출물이 형성되며, Nb이 1.0 wt.% 첨가된 Zr1.0Nb0.6Fe0.3V 합금에서는 HCP 구조의 (Zr,Nb)(Fe,V)$_2$ 석출물과 BCC 구조인 $\beta$-Zr이 생성된다. Zr1.0Nb0.6Fe0.3V 합금을 제외하고는 대부분의 합금에서 석출물은 약 1.0 $\mu$m의 크기를 나타냈다. 합금 조성이 다를 경우에 석출물 크기와 35$0^{\circ}C$ 부식 특성과는 연관성이 없는 것으로 나타났다.

  • PDF