• Title/Summary/Keyword: Navigation Light

Search Result 264, Processing Time 0.026 seconds

Pattern Recognition using Two-Pupil Optical Scanning Technique and PAL-Spatial Light Modulator (Two-pupil 광학 스캐닝 기술과 PAL-공간변조기를 이용한 패턴 인식)

  • Doh, Kyu-Bong;Kim, Kwan-In;Kim, Myeong-Soo
    • Journal of Advanced Navigation Technology
    • /
    • v.12 no.6
    • /
    • pp.659-665
    • /
    • 2008
  • We demonstrate experimentally that the method of Two-pupil optical scanning technique with PAL-spatial light modulator is capable of performing real-time joint transform correlation(JTC) optical system. Optical addressing is achieved by the use of a photosensitive layer of $\alpha$ - Si which controls the electric field across the liquid crystal The demonstrated technique is based on two-pupil optical heterodyne scanning. The method is independent of a spatial light modulator (SLM) in the Fourier plane. We develop the theory of the technique and evaluate a performance of the method by experimentally estimating the correlation between the target image and the reference image.

  • PDF

Analysis on motions characteristics of Floaters using two-dimensional Boundary Element Method (2차원 경계요소법을 이용한 부유체의 운동 특성 연구)

  • Baek, Mi-Seon;Seong, Yu-Chang
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2013.06a
    • /
    • pp.136-138
    • /
    • 2013
  • Current, standards light buoys as maritime traffic safety facilities have 10 different types of buoys and the smallest size of those is 4.4m. Therefore, making for easy replacement and repair parts for the type of small light buoys is proposed. Meanwhile, position reliability of floaters by external forces in the environment fall and stability examination should be considered for prohibiting accidents as loss. In this paper, a new light buoy is analyzed on Encounter Frequency types using commercial program and fluid forces is simulated on cross-sectional shape of the float using two-dimensional Boundary Element Method(BEM).

  • PDF

Autonomous Navigation of KUVE (KIST Unmanned Vehicle Electric) (KUVE (KIST 무인 주행 전기 자동차)의 자율 주행)

  • Chun, Chang-Mook;Suh, Seung-Beum;Lee, Sang-Hoon;Roh, Chi-Won;Kang, Sung-Chul;Kang, Yeon-Sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.7
    • /
    • pp.617-624
    • /
    • 2010
  • This article describes the system architecture of KUVE (KIST Unmanned Vehicle Electric) and unmanned autonomous navigation of it in KIST. KUVE, which is an electric light-duty vehicle, is equipped with two laser range finders, a vision camera, a differential GPS system, an inertial measurement unit, odometers, and control computers for autonomous navigation. KUVE estimates and tracks the boundary of road such as curb and line using a laser range finder and a vision camera. It follows predetermined trajectory if there is no detectable boundary of road using the DGPS, IMU, and odometers. KUVE has over 80% of success rate of autonomous navigation in KIST.

3-D Indoor Navigation and Autonomous Flight of a Micro Aerial Vehicle using a Low-cost LIDAR (저가형 LIDAR를 장착한 소형 무인항공기의 3차원 실내 항법 및 자동비행)

  • Huh, Sungsik;Cho, Sungwook;Shim, David Hyunchul
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.3
    • /
    • pp.154-159
    • /
    • 2014
  • The Global Positioning System (GPS) is widely used to aid the navigation of aerial vehicles. However, the GPS cannot be used indoors, so alternative navigation methods are needed to be developed for micro aerial vehicles (MAVs) flying in GPS-denied environments. In this paper, a real-time three-dimensional (3-D) indoor navigation system and closed-loop control of a quad-rotor aerial vehicle equipped with an inertial measurement unit (IMU) and a low-cost light detection and ranging (LIDAR) is presented. In order to estimate the pose of the vehicle equipped with the two-dimensional LIDAR, an octree-based grid map and Monte-Carlo Localization (MCL) are adopted. The navigation results using the MCL are then evaluated by making a comparison with a motion capture system. Finally, the results are used for closed-loop control in order to validate its positioning accuracy during procedures for stable hovering and waypoint-following.

A Study on the Aids to Navigation System from the Viewpoint of Maneuverability and Combined Piloting of the Ships(I) (선박의 조종성과 복합항행견지에서 선로표식시스템에 관한 연구(I))

  • 구자윤;이동섭;전상엽;정태권;우병구
    • Journal of the Korean Institute of Navigation
    • /
    • v.16 no.3
    • /
    • pp.19-31
    • /
    • 1992
  • The Navigational System is the Fundamental System of Port Transportation System and comprises 3 Subsystems, say, the Waterway System, the Shiphandling System and the Support System. The Waterway System of Navigational System is the important and fundamental System for Traffic Safety inside the Port like a Car Road System on Land. This study aims to make a Guideline for the Optimal Waterway System of Port Development and Safety. The Conclusion of this Paper are drawn : 1) The complicated Shiphandling Operations should be avoided for the period of Physical night Time for eliminating the Human Errors. 2) For the Maneuverability and all-weather Combined Piloting the Inside Turn Point Buoy and Begin the-turn Buoy should be mounted with Racon(T) and Radar Reflector for foggy and bad weathers. 3) The Seabuoy located in the Approaching Area for Pilot Station and making Landfall should be mounted with Racon(G) and Morese A Light for giving a Hint of Pilot Station to the Captain on the Bridge, and these Equipments of Racon and Light should be operated normally and effectively even in a Heavy and stormy weathers. 4) A Basic Practical Expression, 1/2 L sin D, for calculating the Extra Width of Cutoff Turn Regions was derived Originally from the Viewpoint of Turn Maneuvers and Maneuverability of the Ship.

  • PDF

Underwater Guidance System for AUV using Optical Sensor Array (광센서 배열을 이용한 무인잠수정의 종단유도장치 시스템)

  • Son, Hyeon-joong;Choi, Hyeung-sik;Kang, Jin-il;Sur, Joo-no;Jeong, Seong-hoon;Kim, Joon-young
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.2
    • /
    • pp.125-133
    • /
    • 2019
  • In this paper, a new study was performed on the docking of AUV to docking station using light and light sensor system under the water. For this, a guiding system for AUV loading sensor system composed of lense, light sensor, signal processor, and processor and docking system with LED are proposed. An analysis on light sensor system and light-collecting lense to obtain accurate relative angle and measurement accuracy was performed. To prove this, the system was built and a basic experiment was performed. Finally, the feasibility of the developed docking system was verified the test in the water tank.

Navigation of a mobile robot using active landmarks (능동 표식을 이용한 이동 로봇의 운행)

  • 노영식;김재숙;권석근
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.916-919
    • /
    • 1996
  • An real-time active beacon localization system for mobile robots is developed and implemented. This system permits the estimation of robot positions when detecting light sources by PSD(Position Sensitive Detector) sensor which are placed sparsely over the robot's work space as beacons(or landmarks). An LSE(Least Square Estimation) method is introduced to calibrate the internal parameters of a model for the beacon and robot position. The proposed system has two operational modes of position estimation. One is the initial position calculation by the detection of two or more light sources positions of which are known. The other is the continuous position compensation that calculates the position and heading of the robot using the IEKF(Iterated Extended Kalman Filter) applied to the beacon and dead-reckoning data. Practical experiments show that the estimated position obtained by this system is precise enough to be useful for the navigation of robots.

  • PDF

Applications of the EPS Embankment Metod to Earth Fils at the Seaside (해안 매립지역의 EPS 성토공법 적용)

  • 장용채;조성민;이유옥
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1999.10a
    • /
    • pp.219-224
    • /
    • 1999
  • The expansion of old road is needed in construction the entrance at the $\bigcirc$$\bigcirc$I/C road in $\bigcirc$$\bigcirc$city. To strength the national competition, many agents who concerned do their best for finishing that construction early as soon as possible. In generally, soil embankment on soft foundation is caused to reduce the stability by making the settlement of ground surface due to the over load. Thus, we try to make it stable by building EPS embankment construction which in our working place is one kind of the method of light embankment construction after excavating the original ground.

Control and Calibration for Robot Navigation based on Light's Panel Landmark (천장 전등패널 기반 로봇의 주행오차 보정과 제어)

  • Jin, Tae-Seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.2
    • /
    • pp.89-95
    • /
    • 2017
  • In this paper, we suggest the method for a mobile robot to move safely from an initial position to a goal position in the wide environment like a building. There is a problem using odometry encoder sensor to estimate the position of a mobile robot in the wide environment like a building. Because of the phenomenon of wheel's slipping, a encoder sensor has the accumulated error of a sensor measurement as time. Therefore the error must be compensated with using other sensor. A vision sensor is used to compensate the position of a mobile robot as using the regularly attached light's panel on a building's ceiling. The method to create global path planning for a mobile robot model a building's map as a graph data type. Consequently, we can apply floyd's shortest path algorithm to find the path planning. The effectiveness of the method is verified through simulations and experiments.

Face Region Detection Algorithm using Fuzzy Inference (퍼지추론을 이용한 얼굴영역 검출 알고리즘)

  • Jung, Haing-Sup;Lee, Joo-Shin
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.5
    • /
    • pp.773-780
    • /
    • 2009
  • This study proposed a face region detection algorithm using fuzzy inference of pixel hue and intensity. The proposed algorithm is composed of light compensate and face detection. The light compensation process performs calibration for the change of light. The face detection process evaluates similarity by generating membership functions using as feature parameters hue and intensity calculated from 20 skin color models. From the extracted face region candidate, the eyes were detected with element C of color model CMY, and the mouth was detected with element Q of color model YIQ, the face region was detected based on the knowledge of an ordinary face. The result of experiment are conducted with frontal face color images of face as input images, the method detected the face region regardless of the position and size of face images.

  • PDF