• Title/Summary/Keyword: Navier-Stokes solver

Search Result 289, Processing Time 0.029 seconds

Numerical Simulation of Chemically Reacting Laminar and Thrbulent Flowfields Using Preconditioning Scheme (예조건화 기법을 이용한 층류 및 난류 화학반응 유동장 해석)

  • Kim Gyo-Soon;Choi Yun-Ho;Rhee Byung-Ohk;Song Bong-Ha
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.4 s.247
    • /
    • pp.320-327
    • /
    • 2006
  • The computations of chemically reacting laminar and turbulent flows are performed using the preconditioned Navier-Stokes solver coupled with turbulent transport and multi-species equations. A low-Reynolds number $k-\varepsilon$ turbulence model proposed by Chien is used. The presence of the turbulent kinetic energy tenn in the momentum equation can materially affect the overall stability of the fluids-turbulence system. Because of this coupling effect, a fully coupled formulation is desirable and this approach is taken in the present study. Choi and Merkle's preconditioning technique is used to overcome the convergence difficulties occurred at low speed flows. The numerical scheme used for the present study is based on the implicit upwind ADI algorithm and is validated through the comparisons of computational and experimental results for laminar methane-air diffusion flame and $ H_2/O_2$ reacting turbulent shear flow. Preconditioning formulation shows better convergence characteristics than that of non-preconditioned system by approximately five times as much.

Flow and Flow Noise Analysis of HSM by Using CAA++ (CAA++를 이용한 HSM에 대한 유동과 유동소음 해석)

  • Kim, Young Nam;Chae, Jun Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.3
    • /
    • pp.205-212
    • /
    • 2014
  • In this paper, sunroof buffeting analysis for Hyundai simple model(HSM) is studied computationally. For validation, the velocity profile of boundary layer around the opening of HSM was obtained and compared with experimental results. The analysis of sunroof buffeting is done in two parts. First a steady state solution is obtained using the Reynolds Averaged Navier Stokes (RANS) solver, and then the computed flow field information is used as input for CAA++. Second transient simulation by CAA++ is performed for the peak sound pressure levels and peak frequencies of buffeting noise over the ranges of flow velocities. The benchmark results of frequency and sound pressure levels showed the general phenomena and matched well with the experimental data obtained by Hyundai Motor Car.

A STUDY ON AERODYNAMIC CHARACTERISTICS DEPENDING ON SHAPE OF AN INTERNAL MOTOR IN A SIROCCO FAN FOR RESIDENTIAL VENTILATION (주거환기용 시로코홴의 내부모터 형상에 따른 공력특성 연구)

  • Cha, K.H.;Kim, J.H.;Kim, K.Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.321-326
    • /
    • 2011
  • Aerodynamic characteristics depending on the shape of an internal motor in a small-size sirocco fan for residential ventilation have been investigated For the aerodynamic analyses of the sirocco fan, three-dimensional Reynolds-averaged Navier-Stokes equations are solved with the shear stress transport model for turbulence closure. The flaw analyses are performed on hexahedral grids using a finite-volume solver. The validation of the numerical results at steady-state is performed by comparing with experimental data for the pressure and efficiency. In order to investigate the aerodynamic characteristics depending on shape of an internal motor in a sirocco fan, the reference shape is analyzed compared to the case without internal motor. Additionally, two shape parameters, height and width of the internal motor in a sirocco fan, are tested to investigate their effects on the aerodynamic characteristics. The results show that the shape of the internal motor in a sirocco fan is an important factor to improve the aerodynamic performances.

  • PDF

THE EXAMINATION OF ACCURACY OF FIRE-DRIVEN FLOW SIMULATION IN TUNNEL EQUIPPED WITH VENTILATION (환기가 있는 터널에서의 화재유동 해석의 정확성에 대한 고찰)

  • Jang, Yong-Jun;Lee, Chang-Hyun;Kim, Hag-Beom;Jung, Woo-Sung
    • Journal of computational fluids engineering
    • /
    • v.14 no.3
    • /
    • pp.115-122
    • /
    • 2009
  • Numerical methods are applied to simulate the smoke behavior in a ventilated tunnel using large eddy simulation (LES) which is incorporated in FDS (Fire Dynamics Simulator) with proper combustion and radiation model. In this study, present numerical results are compared with data obtained from experiments on pool fires in a ventilated tunnel. The model tunnel is $182m(L){\times}5.4m(W){\times}2.4m(H)$. Two fire scenarios with different ventilation rates are considered with two different fire strengths. The present results are analyzed with those from LES without combustion and radiation model and from RANS ($\kappa-\epsilon$) model as well. Temperature distributions caused by fire in tunnel are compared with each other. It is found that thermal stratification and smoke back-layer can be predicted by FDS and the temperature predictions by FDS show better results than LES without combustion and radiation model. The FDS solver, however, failed to predict correct flow pattern when the high ventilation rate is considered in tunnel because of the defects in the tunnel-inlet turbulence and the near-wall turbulence.

Multi-Objective Optimization of a Dimpled Channel Using NSGA-II (NSGA-II를 통한 딤플채널의 다중목적함수 최적화)

  • Lee, Ki-Don;Samad, Abdus;Kim, Kwang-Yong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.113-116
    • /
    • 2008
  • This work presents numerical optimization for design of staggered arrays of dimples printed on opposite surfaces of a cooling channel with a fast and elitist Non-Dominated Sorting of Genetic Algorithm (NSGA-II) of multi-objective optimization. As Pareto optimal front produces a set of optimal solutions, the trends of objective functions with design variables are predicted by hybrid multi-objective evolutionary algorithm. The problem is defined by three non-dimensional geometric design variables composed of dimpled channel height, dimple print diameter, dimple spacing and dimple depth to maximize heat transfer rate compromising with pressure drop. Twenty designs generated by Latin hypercube sampling were evaluated by Reynolds-averaged Navier-Stokes solver and the evaluated objectives were used to construct Pareto optimal front through hybrid multi-objective evolutionary algorithm. The optimum designs were grouped by k-mean clustering technique and some of the clustered points were evaluated by flow analysis. With increase in dimple depth, heat transfer rate increases and at the same time pressure drop also increases, while opposite behavior is obtained for the dimple spacing. The heat transfer performance is related to the vertical motion of the flow and the reattachment length in the dimple.

  • PDF

AERODYNAMIC EFFECTS OF THE TAB ON A HOVERING ROTOR BLADE (정지비행 로터 블레이드에 부착된 탭의 공기역학적 효과)

  • Kang, H.J.;Kim, D.H.;Kim, S.H.
    • Journal of computational fluids engineering
    • /
    • v.18 no.3
    • /
    • pp.60-66
    • /
    • 2013
  • Numerical simulation was performed for the rotor blade with fixed tab in hover using an unstructured mesh Navier-Stokes flow solver. The inflow and outflow boundary conditions using 1D momentum and 3D sink theory were applied to reduce computational time. Calculations were performed at several operating conditions of varying collective pitch angle and fixed tab length. The aerodynamic effect of fixed tab length was investigated for hovering efficiency, pitching moment and flapping moment of the rotor blade. The results show that it affects linearly increasing on the pitching moment of the rotor blade but does not affect on the flapping moment. The required power is less than 45kw for ground rotating test in hover. Numerical simulations also show that the vortex generate not only from the tip of the rotor blade but also from the fixed tab on the rotor blade.

PARALLEL CFD SIMULATIONS OF PROJECTILE FLOW FIELDS WITH MICROJETS

  • Sahu Jubaraj;Heavey Karen R.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.05a
    • /
    • pp.94-99
    • /
    • 2006
  • As part of a Department of Defense Grand Challenge Project, advanced high performance computing (HPC) time-accurate computational fluid dynamics (CFD) techniques have been developed and applied to a new area of aerodynamic research on microjets for control of small and medium caliber projectiles. This paper describes a computational study undertaken to determine the aerodynamic effect of flow control in the afterbody regions of spin-stabilyzed projectiles at subsonic and low transonic speeds using an advanced scalable unstructured flow solver in various parallel computers such as the IBM SP4 and Linux Cluster. High efficiency is achieved for both steady and time-accurate unsteady flow field simulations using advanced scalable Navier-Stokes computational techniques. Results relating to the code's portability and its performance on the Linux clusters are also addressed. Numerical simulations with the unsteady microjets show the jets to substantially alter the flow field both near the jet and the base region of the projectile that in turn affects the forces and moments even at zero degree angle of attack. The results have shown the potential of HPC CFD simulations on parallel machines to provide to provide insight into the jet interaction flow fields leading to improve designs.

  • PDF

NUMERICAL ANALYSIS OF CAVITATION WITH COMPRESSIBILITY EFFECTS AROUND HEMISPHERICAL HEAD-FORM BODY (반구형 전두부 실린더에서 발생하는 캐비테이션 유동의 압축성 효과에 대한 수치해석 연구)

  • Park, S.;Rhee, S.H.;Shin, B.R.
    • Journal of computational fluids engineering
    • /
    • v.18 no.4
    • /
    • pp.9-16
    • /
    • 2013
  • Cavitation on an axi-symmetric hemispherical head-form body was studied using an Reynolds-averaged Navier-Stokes equations solver based on a cell-centered finite volume method. To consider compressibility effects on the vapor phase and cavity interface, a pressure-based compressible flow CFD code was developed. To validate the developed CFD code, cavitating flow around the hemispherical head-form body was simulated using pressure-based incompressible and compressible CFD codes and validated against existing experimental data in the three-way comparison. The cavity shedding behavior, length of re-entrant jet, drag history, and Strouhal number of the hemispherical head-form body were compared between two CFD codes. The results, in this paper, suggested that the computations of cavitating flow with compressibility effects improve the description of cavity dynamics.

Numerical Analysis on Separation Dynamics of Strap-On Boosters in the Dense Atmosphere

  • Choi, Seongjin;Ko, Soon-Heum;Kim, Chongam;Rho, Oh-Hyun;Park, Jeong-joo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.2
    • /
    • pp.1-18
    • /
    • 2001
  • A numerical technique for simulating the separation dynamics of strap-on boosters jettisoned in the dense atmosphere is presented. Six degree of freedom rigid body equations of motion are integrated into the three-dimensional unsteady Navier-Stokes solution procedure to determine the dynamic motions of strap-ons. An automated Chimera overlaid grid technique is introduced to achieve maximum efficiency for multi-body dynamic motion and a domain division technique is implemented in order to reduce the computational cost required to find interpolation points in the Chimera grids. The flow solver is validated by comparing the computed results around the Titan IV launch vehicle with experimental data. The complete analysis process is then applied to the. H-II launch vehicle, the central rocket in japans space program, the CZ-3C launch vehicle developed in China and the KSR-III, a three-stage sounding rocket being developed in Korea. From the analyses, separation trajectories of strap-on boosters are predicted and aerodynamic characteristics around the vehicles at every time interval are examined. In addition, separation-impulse devices generally introduced for safe separation of strap-ons are properly modeled in the present paper and the jettisoning force requirements are examined quantitatively.

  • PDF

Fully Unstructured Mesh based Computation of Viscous Flow around Marine Propellers (비정렬격자를 이용한 프로펠러 성능 및 주위 유동해석)

  • Kim, Min-Geon;Ahn, Hyung Taek;Lee, Jin-Tae;Lee, Hong-Gi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.2
    • /
    • pp.162-170
    • /
    • 2014
  • A CFD(Computational Fluid Dynamics) analysis is presented to predict hydrodynamic characteristics of a marine propeller. A commercial RANS(Reynolds Averaged Navier-Stokes equation) solver, namely FLUENT, is utilized in conjunction with fully unstructured meshes around rotating propeller. Mesh generation process is greatly accelerated by using fully unstructured meshes composed of both isotropic and anisotropic tetrahedral elements. The anisotropic tetrahedral elements were used in the flow domain near the blade and shaft, where the viscous effect is important, having complex shape yet resolving the thin boundary layers. For other regions, isotropic tetrahedral elements are utilized. Two different approaches simulating rotational effect of the propeller are employed, namely Moving reference frame technique for steady simulation, and Sliding mesh technique for unsteady simulation. Both approaches are applied to the propeller open water (POW) test simulation. The current results, which are thrust and torque coefficients, are compared with available experimental data.