• Title/Summary/Keyword: Navier-Stokes Analysis

Search Result 915, Processing Time 0.029 seconds

Nonlinear Characteristics of Flow Separation Induced Vibration at Low-Speed Using Coupled CSD and CFD technique (전산구조진동/전산유체 기법을 연계한 저속 유동박리 유발 비선형 진동특성 연구)

  • Kim, Dong-Hyun;Chang, Tae-Jin;Kwon, Hyuk-Jun;Lee, In
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.140-146
    • /
    • 2002
  • The fluid induced vibration (FIV) phenomena of a 2-D.O.F airfoil system have been investigated in low Reynolds number incompressible flow region. Unsteady flows with viscosity are computed using two-dimensional incompressible Navier-stokes code. To validate developed Navier-Stokes code, steady and unsteady flow fields around airfoil are analyzed. The present fluid/structure interaction analysis is based on the most accurate computational approach with computational fluid dynamics (CSD) and computational structural dynamics (CSD) techniques. The highly nonlinear fluid/structure interaction phenomena due to severe flow separations have been analyzed fur the low Reynolds region (R$_{N}$ =500~5000) that has a dominancy of flow viscosity. The effect of R$_{N}$ on the fluid/structure coupled vibration instability of 2-DOF airfoil system is presented and the effect of initial angle of attack on the dynamic instability are also shown.own.

  • PDF

Computational Analysis of the Flowfield of a Mixer-Ejector Nozzle (Mixer-Ejector 노즐 유동장에 관한 수치해석)

  • Park, Yun-Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.1
    • /
    • pp.71-82
    • /
    • 2002
  • A time-iterative compressible Navier-Stokes code is developed to analyze the flowfield of a two-dimensional ejector nozzle system. A parametric study has been made for two controlling parameters, duct to nozzle area ratio and nozzle pressure ratio. Results show that there is an optimum area ratio for an efficient pumping of secondary flow. At high area ratios, a freestream flow directly passes through the mixing duct without giving adequate pumping. While at low area ratios, jet boundary is acting as a blockage to incoming flow. The nozzle pressure ratio variation shows that the pumping rate increases as the pressure ratio increases provided there is no interaction between the shroud wall and the shock cell structure.

Air Compressibility Effect in CFD-based Water Impact Analysis (CFD 기반 유체충격 해석에서 공기 압축성 효과)

  • Tran, Huu Phi;Ahn, Hyung-Taek
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.6
    • /
    • pp.581-591
    • /
    • 2011
  • This paper describes the air compressibility effect in the CFD simulation of water impact load prediction. In order to consider the air compressibility effect, two sets of governing equations are employed, namely the incompressible Navier-stokes equations and compressible Navier-Stokes equations that describe general compressible gas flow. In order to describe violent motion of free surface, volume-of-fluid method is utilized. The role of air compressibility is presented by the comparative study of water impact load obtained from two different air models, i.e. the compressible and incompressible air. For both cases, water is considered as incompressible media. Compressible air model shows oscillatory behavior of pressure on the solid surface that may attribute to the air-cushion effect. Incompressible air model showed no such oscillatory behavior in the pressure history. This study also showed that the CFD simulation can capture the formation of air pockets enclosed by water and solid surface, which may be the location where the air compressibility effect is dominant.

The Flow Analysis of Virtual Channel depending upon the change of two ingates

  • Kim, Nam-Hyeong;Kim, Gyeong-Bo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1636-1640
    • /
    • 2006
  • SMAC method, one of the computational fluid dynamics techniques, is modified from the original MAC method for the time-dependent variation of flow analysis. The Navier-Stokes equations for incompressible time-dependent viscous flow are applied, and also marker particles that present the visualization of flow analysis are used. In this study SMAC technique is used to analyze the flow behavior in the water-filling of virtual channel. Then by changes of diameter of two ingates, the change of velocity and discharge when two ingates are filled the water to virtual channel are simulated. As a result, water-filling flow pattern in the virtual channel is simulated very well. Therefore, this numerical simulation will also be applied for the design of structures as open flume and porous breakwater.

  • PDF

NUMERICAL ANALYSIS OF THERMAL FLOW OF CABIN INTERIOR AND DE-ICING ON AUTOMOBILE GLASS (자동차 내부 열유동해석 및 전방유리면의 해빙 전산해석)

  • Song D. W.;Park W. G.;Jang K. L.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.75-80
    • /
    • 2005
  • The present work was undertaken to numerically analyze the defrosting phenomena of windshield glass. In order to analysis the phase change from frost to water on windshield glass by discharging hot air from a defroster nozzle, the flow and the temperature field of the cabin interior, the heat transfer through the windshield glass, and the phase change of frost should be solve simultaneously. In the present work, the flow field was obtained by solving 3-D incompressible Navier-Stokes equations, and the temperature field was computed from the incompressible energy equation. The phase change process was solved by the enthalpy method. For the code validation, the temperature and the phase change of the driven cavity were calculated. The calculation showed a good agreement with other numerical results. Then, the present code was applied to the defrosting problem of a real automobile, and a good agreement with the experimental data was also obtained.

  • PDF

Numerical Study of Defrost Phenomenon of Automobile Windshield (자동차 전방 유리면 성에 전산 해빙해석)

  • 박만성;황지은;박원규;장기룡
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.157-163
    • /
    • 2003
  • This work was undertaken for the numerical analysis of defrosting phenomena of automobile windshield. To analyze the defrost, the flow and temperature field of cabin interior, heat transfer through the windshield glass, and phase change of the frost should be analyzed simultaneously. The flow field was obtained by solving the 3-D unsteady Navier-Stokes equation and the temperature field was computed by energy equation. The phase-change process of Stefan problem was solved by enthalpy method. For code validation, the temperature field of the driven cavity was calculated. The result of calculation shows a good agreement with the other numerical results. Then, the present code was applied to the defrosting analysis of a real automobile and, also, a good agreement with experiment was obtained.

Aeroelastic Analysis of Bridge Girder Section Using Navier-Stokes Equations (Navier-Stokes 방정식을 이8한 교량 구조물의 공탄성 해석)

  • Park, Sung-Jong;Kwon, Hyuk-Jun;Yoo, Jae-Han;Lee, In;Han, Jae-Hong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.235-242
    • /
    • 2003
  • This paper deals with numerical analysis of static and dynamic wind effects on civil engineering structures. Aeroelastic analysis becomes a prime criterion to be confirmed during the structural design because the long-span suspension bridges are prone to the aerodynamic instabilities caused by wind. If the wind velocity exceeds the critical velocity that the bridge can withstand, then the bridge fails due to the phenomenon of flutter. The aeroelastic simulation is carried out using both Computational Fluid Dynamic(CFD) and Computational Structural Dynamic(SCD) schemes.

  • PDF

Optimal Active-Control & Development of Optimization Algorithm for Reduction of Drag in Flow Problems(1) - Development of Optimization Algorithm and Techniques for Large-Scale and Highly Nonlinear Flow Problem (드래그 감소를 위한 유체의 최적 엑티브 제어 및 최적화 알고리즘의 개발(1) - 대용량, 비선헝 유체의 최적화를 위한 알고리즘 및 테크닉의 개발)

  • Bark, Jai-Hyeong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.5
    • /
    • pp.661-669
    • /
    • 2007
  • Eyer since the Prandtl's experiment in 1934 and X-21 airjet test in 1950 both attempting to reduce drag, it was found that controlling the velocities of surface for extremely fast-moving object in the air through suction or injection was highly effective and active method. To obtain the right amount of suction or injection, however, repetitive trial-and error parameter test has been still used up to now. This study started from an attempt to decide optimal amount of suction and injection of incompressible Navier-Stokes by employing optimization techniques. However, optimization with traditional methods are very limited, especially when Reynolds number gets high and many unexpected variables emerges. In earlier study, we have proposed an algorithm to solve this problem by using step by step method in analysis and introducing SQP method in optimization. In this study, we propose more effective and robust algorithm and techniques in solving flow optimization problem.

Numerical Study on Various Ribs in a Triangular Internal Cooling Channel (삼각형 내부냉각유로에 설치된 다양한 형태의 리브에 관한 수치해석적 연구)

  • Park, Min-Jung;Moon, Mi-Ae;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.4
    • /
    • pp.19-26
    • /
    • 2012
  • In this paper, a parametric study on ribs which are installed in an equilateral triangular internal cooling channel is presented. The numerical analysis of the flow structure and heat transfer characteristics is performed using three-dimensional Reynolds-averaged Navier-Stokes equations with the shear stress transport turbulence model. The numerical results are obtained at Reynolds number, 20,000. The parametric study is performed for the parameters, the angle of a rib, rib pitch-to-hydraulic diameter ratio, rib width-to-hydraulic diameter ratio, and rib height-to-hydraulic diameter ratio. The computational results are validated with the experimental data for area-averaged Nusselt number.

Flow analysis and design optimization of a mixed-flow fan (사류송풍기의 유동해석 및 최적설계)

  • Seo, Seoung-Jin;Jun, Jae-Wook;Kim, Kwang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.684-689
    • /
    • 2001
  • In this study, three-dimensional viscous flow analysis and optimization are presented for the design of a mixed-flow fan. Steady, imcompressible, three-dimensional Reynolds averaged Navier-Stokes equations are used as governing equations, and standard $k-{\varepsilon}$ turbulence model is chosen as a turbulence model. Governimg equations are discretized using finite volume method. Upwind difference scheme is used for the discretization of the convective term and SIMPLEC algorithm is used as a velocity-pressure correction procedure. The computational results are compared with the results obtained by TASCflow. For the numerical optimization of the design, objective function is defined as a ratio of generation of the turbulent energy to pressure head. Sweep angles are used as design variables.

  • PDF