• 제목/요약/키워드: Naver Search Index

검색결과 9건 처리시간 0.028초

아파트가격지수와 네이버 트렌드지수 간의 연관성 (The Relationship between Apartment Price Index and Naver Trend Index)

  • 유한수
    • 토지주택연구
    • /
    • 제13권4호
    • /
    • pp.45-53
    • /
    • 2022
  • 본 연구에서는 '아파트 가격'과 '인터넷 검색량' 간의 관계를 분석하였다. 선행 논문들이 '공표된 아파트 가격'과 '인터넷 검색량' 간의 관계만을 검정했던 것에 비해, 본 논문은 '공표된 아파트 가격'을 '본질적 가격 요소'와 '일시적 가격 요소'로 구분하여 '본질적 가격 요소와 인터넷 검색량' 간의 관계, '일시적 가격 요소와 인터넷 검색량' 간의 관계에 대해서도 분석했다는 것이 선행 연구들과의 차별적 측면이다. Granger 인과관계 분석 결과를 보면, '공표된 아파트 가격'과 '인터넷 검색량'이 서로 양방향의 Granger 인과관계를 갖는 것으로 나타났다. 선행논문들에서 연구가 이루어지지 않았던 부분으로서, 아파트 가격의 추세 요소인 '아파트 본질적 가격 요소'도 '인터넷 검색량'과 피드백적 관계를 보였다. 그리고 '아파트 일시적 가격 요소'는 '인터넷 검색량'에 대해 선행관계를 갖는 것으로 나타났다. 아파트 일시적 가격 요소도 인터넷 검색량과 관계가 있다는 것은 아파트시장 참여자들의 '일시적 심리적 측면, 과잉반응에 의해 발생되는 가격 요소'도 인터넷 검색량에 영향을 준다는 것을 의미한다. 본 연구 결과는 아파트 가격의 움직임이 시장참여자들의 관심에 영향을 준다는 의미를 제시하며, 부동산시장 분석 등에 있어서 가격의 움직임, 인터넷 검색량과 같은 자료를 활용해야 한다는 의미를 갖고 있다.

COVID-19 국면의 암호화폐 가격 예측: 네이버트렌드와 딥러닝의 융합 연구 (Forecasting Cryptocurrency Prices in COVID-19 Phase: Convergence Study on Naver Trends and Deep Learning)

  • 김선웅
    • 융합정보논문지
    • /
    • 제12권3호
    • /
    • pp.116-125
    • /
    • 2022
  • 본 연구의 목적은 COVID-19 팬데믹 국면에서 코로나 발생과 확산에 따른 투자자 불안심리가 암호화폐 가격에 영향을 미치는지를 분석하고, 딥러닝 모형에 기반하여 암호화폐의 가격 예측을 실험하는 것이다. 투자자 불안심리는 네이버의 코로나 검색지수와 코로나 확진자 정보를 결합하여 산출하며, 암호화폐 가격과의 그랜저 인과성을 분석하고 딥러닝모형을 이용하여 암호화폐 가격을 예측한다. 실험 결과는 다음과 같다. 첫째, CCI 지표는 비트코인, 이더리움, 라이트코인의 수익률에 유의적인 그랜저 인과성을 보여주었다. 둘째, CCI를 입력변수로 하는 LSTM은 높은 예측성과를 보여주었다. 셋째, 암호화폐 사이의 비교에서는 비트코인의 가격 예측 성과가 가장 높게 나타났다. 본 연구는 코로나 국면에서 네이버 코로나 검색 정보와 암호화폐 가격과의 관련성을 분석한 첫 시도라는 점에서 학술적 의의를 찾을 수 있다. 향후 연구에서는 가격 예측 정확성을 높이기 위하여 다양한 딥러닝 모형으로의 확장 연구가 필요하다.

Can Big Data Help Predict Financial Market Dynamics?: Evidence from the Korean Stock Market

  • Pyo, Dong-Jin
    • East Asian Economic Review
    • /
    • 제21권2호
    • /
    • pp.147-165
    • /
    • 2017
  • This study quantifies the dynamic interrelationship between the KOSPI index return and search query data derived from the Naver DataLab. The empirical estimation using a bivariate GARCH model reveals that negative contemporaneous correlations between the stock return and the search frequency prevail during the sample period. Meanwhile, the search frequency has a negative association with the one-week- ahead stock return but not vice versa. In addition to identifying dynamic correlations, the paper also aims to serve as a test bed in which the existence of profitable trading strategies based on big data is explored. Specifically, the strategy interpreting the heightened investor attention as a negative signal for future returns appears to have been superior to the benchmark strategy in terms of the expected utility over wealth. This paper also demonstrates that the big data-based option trading strategy might be able to beat the market under certain conditions. These results highlight the possibility of big data as a potential source-which has been left largely untapped-for establishing profitable trading strategies as well as developing insights on stock market dynamics.

금융시장의 빅데이터 트렌드를 이용한 주가지수 투자 전략 (Investment Strategies for KOSPI Index Using Big Data Trends of Financial Market)

  • 신현준;라현우
    • 경영과학
    • /
    • 제32권3호
    • /
    • pp.91-103
    • /
    • 2015
  • This study recognizes that there is a correlation between the movement of the financial market and the sentimental changes of the public participating directly or indirectly in the market, and applies the relationship to investment strategies for stock market. The concerns that market participants have about the economy can be transformed to the search terms that internet users query on search engines, and search volume of a specific term over time can be understood as the economic trend of big data. Under the hypothesis that the time when the economic concerns start increasing precedes the decline in the stock market price and vice versa, this study proposes three investment strategies using casuality between price of domestic stock market and search volume from Naver trends, and verifies the hypothesis. The computational results illustrate the potential that combining extensive behavioral data sets offers for a better understanding of collective human behavior in domestic stock market.

포털 검색 강도가 주가 급락에 미치는 영향에 관한 연구 (The Effect of Portal Search Intensity on Stock Price Crash)

  • 김민수;권혁준
    • 한국전자거래학회지
    • /
    • 제22권2호
    • /
    • pp.153-168
    • /
    • 2017
  • 최근 주식의 수익률과 거래량을 설명하는 요인 중 하나로 투자자들의 관심이나 주식관련 정보 전파의 효율성 등이 중요하게 인식되고 있다. 또한 기업관련 정보가 투자자들에게 투명하게 전파되지 않을 때 기업 주가의 급락(crash) 위험을 증가시킨다는 연구 결과들이 축적되고 있다. 본 연구에서는 네이버 트렌드를 이용하여 포털에서의 검색 강도가 증가하는 것이 주식 수익률의 급락에 어떤 영향을 미치는지를 분석하였다. 다양한 주가급락 위험의 측정변수와 검색 강도 측정치를 이용한 분석에서 포털 검색강도가 상대적으로 높은 기업-연도에서 주가 급락의 위험이 감소하는 것으로 관찰되었다. 이러한 결과는 기업 관련 정보 전파가 투자자들에게 효율적으로 이루어지지 않을 때 미래의 주가급락을 초래한다는 논의와 일치하는 결과이다. 또한 이러한 결과는 분석에 발생가능한 내생성을 통제한 후에도 유의하게 성립하는 것으로 관찰되었다.

개별 기업에 대한 인터넷 검색량과 주가변동성의 관계: 국내 코스닥시장에서의 산업별 실증분석 (The Relationship between Internet Search Volumes and Stock Price Changes: An Empirical Study on KOSDAQ Market)

  • 전새미;정여진;이동엽
    • 지능정보연구
    • /
    • 제22권2호
    • /
    • pp.81-96
    • /
    • 2016
  • 최근 인터넷의 보편화와 정보통신 기술의 발달로 인해 인터넷을 통한 정보검색이 일상화 됨에 따라 주식에 관한 정보 역시 검색엔진, 소셜네트워크서비스, 인터넷 커뮤니티 등을 통해 획득하는 경우가 잦아졌다. 특정 단어에 대한 키워드 검색량은 사용자의 관심도를 반영하기 때문에 다양한 연구에서 개별 기업에 대한 인터넷 검색량은 투자자의 관심도에 대한 척도로서의 사용가능성을 각광받았다. 특정 주식에 대한 투자자의 관심이 증가할 때 일시적으로 주가가 상승하였다가 회복하는 반전현상은 여러 연구를 통해 검증되어 왔지만 그 동안 투자자의 관심도는 주로 주식거래량, 광고 비용 등을 사용해 간접적으로 측정되었다. 본 연구에서는 국내 코스닥 시장에 상장된 기업에 대한 인터넷 검색량을 투자자의 관심의 척도로 사용하여 투자자의 관심에 근거한 주가변동성의 변화를 전체 시장 측면과 산업별 측면에서 관찰한다. 또한 투자자 관심이 야기한 가격압박에 의한 주가 반전현상의 존재를 코스닥 시장에서 검증하고 산업 간의 반전정도의 차이를 비교한다. 실증분석 결과 비정상적인 인터넷 검색량 증가는 주가변동성의 유의적인 증가를 가져왔고 이러한 현상은 IT S/W, 건설, 유통 산업군에서 특히 강하게 나타났다. 비정상적인 인터넷 검색량의 증가 이후 2주 간 주가변동성이 증가하였고 3~4주 후에는 오히려 변동성이 감소하는 것을 확인하였다. 이러한 주가 반전현상 역시 IT S/W, 건설, 유통 산업군에서 보다 극단적으로 발생하는 것으로 나타난다.

A Heuristic Method of In-situ Drought Using Mass Media Information

  • Lee, Jiwan;Kim, Seong-Joon
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.168-168
    • /
    • 2020
  • This study is to evaluate the drought-related bigdata characteristics published from South Korean by developing crawler. The 5 years (2013 ~ 2017) drought-related posted articles were collected from Korean internet search engine 'NAVER' which contains 13 main and 81 local daily newspapers. During the 5 years period, total 40,219 news articles including 'drought' word were found using crawler. To filter the homonyms liken drought to soccer goal drought in sports, money drought economics, and policy drought in politics often used in South Korea, the quality control was processed and 47.8 % articles were filtered. After, the 20,999 (52.2 %) drought news articles of this study were classified into four categories of water deficit (WD), water security and support (WSS), economic damage and impact (EDI), and environmental and sanitation impact (ESI) with 27, 15, 13, and 18 drought-related keywords in each category. The WD, WSS, EDI, and ESI occupied 41.4 %, 34.5 %, 14.8 %, and 9.3 % respectively. The drought articles were mostly posted in June 2015 and June 2017 with 22.7 % (15,097) and 15.9 % (10,619) respectively. The drought news articles were spatiotemporally compared with SPI (Standardized Precipitation Index) and RDI (Reservoir Drought Index) were calculated. They were classified into administration boundaries of 8 main cities and 9 provinces in South Korea because the drought response works based on local government unit. The space-time clustering between news articles (WD, WSS, EDI, and ESI) and indices (SPI and RDI) were tried how much they have correlation each other. The spatiotemporal clusters detection was applied using SaTScan software (Kulldorff, 2015). The retrospective and prospective cluster analyses were conducted for past and present time to understand how much they are intensive in clusters. The news articles of WD, WSS and EDI had strong clusters in provinces, and ESI in cities.

  • PDF

소셜미디어 사진 게시물의 딥러닝을 활용한 도시공원 이용자 활동 이미지 분류모델 개발 (Development of Image Classification Model for Urban Park User Activity Using Deep Learning of Social Media Photo Posts)

  • 이주경;손용훈
    • 한국조경학회지
    • /
    • 제50권6호
    • /
    • pp.42-57
    • /
    • 2022
  • 본 연구의 목적은 인공지능의 딥러닝을 활용하여 소셜미디어에서 공유되는 도시공원 이용자 활동사진을 분류하는 기초 모델을 만드는 것이다. 소셜미디어 데이터는 네이버 검색을 통해 수집된 도시공원 관련 사진들을 수집하여 분류모델에 활용하였다. 도시공원 특성 평가에 활용할 수 있는 지표인 자연성(naturalness), 잠재적 매력성(potential attraction), 활동(activity)을 기반으로 최종 21개의 분류 항목체계를 만들고, 항목별로 네이버에서 공유되는 실제 도시공원 사진을 수집하여 주석이 달린 데이터 세트를 구축했다. 수집한 사진 데이터 세트에 대해 커스텀(cuntom) CNN 모델과 사전 훈련된 CNN의 전이학습 모델을 설계하고 분석하였다. 연구결과, 가장 우수한 성능을 보였던 Xception 전이학습 모델이 최종적으로 도시공원 이용자 활동 이미지 분류모델로 선정되었으며, 그 외 다양한 평가 지표를 통해 모델을 평가했다. 본 연구는 소셜미디어에 공유되는 이용자 사진을 활용하여 도시공원 특성을 평가할 수 있는 지표로서 AI를 구축한 것에 의의가 있다. 딥러닝을 활용한 분류모델은 수동분류에 대한 한계를 보완하고, 대량의 도시공원 사진을 효율적으로 분류할 수 있어서 향후 도시공원의 모니터링 및 관리에 활용할 수 있는 유용한 방법이라고 할 수 있다.

지식검색 서비스에서의 소셜 네트워크 기반 영향력 지수 알고리즘 (An Influence Value Algorithm based on Social Network in Knowledge Retrieval Service)

  • 최창현;박건우;이상훈
    • 한국컴퓨터정보학회논문지
    • /
    • 제14권10호
    • /
    • pp.43-53
    • /
    • 2009
  • 집단지성을 이용한 지식검색 서비스는 개방적 구조와 축적된 자료를 공유할 수 있다는 커뮤니티적인 특성으로 큰 인기를 얻고 있다. 하지만 방대한 지식공유 속에서 사용자가 진정으로 원하는 답변 획득은 점점 더 어려워지고 있다. 최근 알고리즘에서 가장 정교하다고 평가 받는 구글을 통해 상위에 랭크된 검색 결과들 중에는 집단지성을 통해 구축된 위키피디아, 야후 Q/A와 같은 소셜 검색엔진의 검색 결과들이 상당수 존재한다. 본 논문은 대부분의 질문은 인간으로부터 문제해결의 실마리를 얻을 수 있다는 점과 온라인상의 사용자에 대한 연구를 통해 지식검색 서비스 사용자 중 영향력 자를 찾는 것에 목적을 둔다. 이에 국내 소셜 검색엔진의 대표인 네이버 지식iN을 중심으로 지식검색내의 사용자 활동성과 신뢰성을 소셜 네트워크 기반으로 정의하고, 사용자간의 관계를 중앙성으로 분석하는 영향력 지수 알고리즘을 제안한다. 제안된 알고리즘을 통한 영향력 지수는 지식검색 서비스에서 문제 해결의 실마리를 가진 사용자를 랭킹화 함으로써 질문에 적합하고신뢰성 있는 답변을 하는 사용자를 분별하는 지표가 되며 이를 바탕으로 지식검색 서비스내의 영향력 자를 식별 가능하게 된다. 이는 지식검색 서비스사용자의 최대 목적인 사용자가필요로 하는 정보와 지식을 보다 용이하게 획득 가능케 함으로써 검색 만족도 향상에 큰 기여를 할 것이다.