본 연구에서는 '아파트 가격'과 '인터넷 검색량' 간의 관계를 분석하였다. 선행 논문들이 '공표된 아파트 가격'과 '인터넷 검색량' 간의 관계만을 검정했던 것에 비해, 본 논문은 '공표된 아파트 가격'을 '본질적 가격 요소'와 '일시적 가격 요소'로 구분하여 '본질적 가격 요소와 인터넷 검색량' 간의 관계, '일시적 가격 요소와 인터넷 검색량' 간의 관계에 대해서도 분석했다는 것이 선행 연구들과의 차별적 측면이다. Granger 인과관계 분석 결과를 보면, '공표된 아파트 가격'과 '인터넷 검색량'이 서로 양방향의 Granger 인과관계를 갖는 것으로 나타났다. 선행논문들에서 연구가 이루어지지 않았던 부분으로서, 아파트 가격의 추세 요소인 '아파트 본질적 가격 요소'도 '인터넷 검색량'과 피드백적 관계를 보였다. 그리고 '아파트 일시적 가격 요소'는 '인터넷 검색량'에 대해 선행관계를 갖는 것으로 나타났다. 아파트 일시적 가격 요소도 인터넷 검색량과 관계가 있다는 것은 아파트시장 참여자들의 '일시적 심리적 측면, 과잉반응에 의해 발생되는 가격 요소'도 인터넷 검색량에 영향을 준다는 것을 의미한다. 본 연구 결과는 아파트 가격의 움직임이 시장참여자들의 관심에 영향을 준다는 의미를 제시하며, 부동산시장 분석 등에 있어서 가격의 움직임, 인터넷 검색량과 같은 자료를 활용해야 한다는 의미를 갖고 있다.
본 연구의 목적은 COVID-19 팬데믹 국면에서 코로나 발생과 확산에 따른 투자자 불안심리가 암호화폐 가격에 영향을 미치는지를 분석하고, 딥러닝 모형에 기반하여 암호화폐의 가격 예측을 실험하는 것이다. 투자자 불안심리는 네이버의 코로나 검색지수와 코로나 확진자 정보를 결합하여 산출하며, 암호화폐 가격과의 그랜저 인과성을 분석하고 딥러닝모형을 이용하여 암호화폐 가격을 예측한다. 실험 결과는 다음과 같다. 첫째, CCI 지표는 비트코인, 이더리움, 라이트코인의 수익률에 유의적인 그랜저 인과성을 보여주었다. 둘째, CCI를 입력변수로 하는 LSTM은 높은 예측성과를 보여주었다. 셋째, 암호화폐 사이의 비교에서는 비트코인의 가격 예측 성과가 가장 높게 나타났다. 본 연구는 코로나 국면에서 네이버 코로나 검색 정보와 암호화폐 가격과의 관련성을 분석한 첫 시도라는 점에서 학술적 의의를 찾을 수 있다. 향후 연구에서는 가격 예측 정확성을 높이기 위하여 다양한 딥러닝 모형으로의 확장 연구가 필요하다.
This study quantifies the dynamic interrelationship between the KOSPI index return and search query data derived from the Naver DataLab. The empirical estimation using a bivariate GARCH model reveals that negative contemporaneous correlations between the stock return and the search frequency prevail during the sample period. Meanwhile, the search frequency has a negative association with the one-week- ahead stock return but not vice versa. In addition to identifying dynamic correlations, the paper also aims to serve as a test bed in which the existence of profitable trading strategies based on big data is explored. Specifically, the strategy interpreting the heightened investor attention as a negative signal for future returns appears to have been superior to the benchmark strategy in terms of the expected utility over wealth. This paper also demonstrates that the big data-based option trading strategy might be able to beat the market under certain conditions. These results highlight the possibility of big data as a potential source-which has been left largely untapped-for establishing profitable trading strategies as well as developing insights on stock market dynamics.
This study recognizes that there is a correlation between the movement of the financial market and the sentimental changes of the public participating directly or indirectly in the market, and applies the relationship to investment strategies for stock market. The concerns that market participants have about the economy can be transformed to the search terms that internet users query on search engines, and search volume of a specific term over time can be understood as the economic trend of big data. Under the hypothesis that the time when the economic concerns start increasing precedes the decline in the stock market price and vice versa, this study proposes three investment strategies using casuality between price of domestic stock market and search volume from Naver trends, and verifies the hypothesis. The computational results illustrate the potential that combining extensive behavioral data sets offers for a better understanding of collective human behavior in domestic stock market.
최근 주식의 수익률과 거래량을 설명하는 요인 중 하나로 투자자들의 관심이나 주식관련 정보 전파의 효율성 등이 중요하게 인식되고 있다. 또한 기업관련 정보가 투자자들에게 투명하게 전파되지 않을 때 기업 주가의 급락(crash) 위험을 증가시킨다는 연구 결과들이 축적되고 있다. 본 연구에서는 네이버 트렌드를 이용하여 포털에서의 검색 강도가 증가하는 것이 주식 수익률의 급락에 어떤 영향을 미치는지를 분석하였다. 다양한 주가급락 위험의 측정변수와 검색 강도 측정치를 이용한 분석에서 포털 검색강도가 상대적으로 높은 기업-연도에서 주가 급락의 위험이 감소하는 것으로 관찰되었다. 이러한 결과는 기업 관련 정보 전파가 투자자들에게 효율적으로 이루어지지 않을 때 미래의 주가급락을 초래한다는 논의와 일치하는 결과이다. 또한 이러한 결과는 분석에 발생가능한 내생성을 통제한 후에도 유의하게 성립하는 것으로 관찰되었다.
최근 인터넷의 보편화와 정보통신 기술의 발달로 인해 인터넷을 통한 정보검색이 일상화 됨에 따라 주식에 관한 정보 역시 검색엔진, 소셜네트워크서비스, 인터넷 커뮤니티 등을 통해 획득하는 경우가 잦아졌다. 특정 단어에 대한 키워드 검색량은 사용자의 관심도를 반영하기 때문에 다양한 연구에서 개별 기업에 대한 인터넷 검색량은 투자자의 관심도에 대한 척도로서의 사용가능성을 각광받았다. 특정 주식에 대한 투자자의 관심이 증가할 때 일시적으로 주가가 상승하였다가 회복하는 반전현상은 여러 연구를 통해 검증되어 왔지만 그 동안 투자자의 관심도는 주로 주식거래량, 광고 비용 등을 사용해 간접적으로 측정되었다. 본 연구에서는 국내 코스닥 시장에 상장된 기업에 대한 인터넷 검색량을 투자자의 관심의 척도로 사용하여 투자자의 관심에 근거한 주가변동성의 변화를 전체 시장 측면과 산업별 측면에서 관찰한다. 또한 투자자 관심이 야기한 가격압박에 의한 주가 반전현상의 존재를 코스닥 시장에서 검증하고 산업 간의 반전정도의 차이를 비교한다. 실증분석 결과 비정상적인 인터넷 검색량 증가는 주가변동성의 유의적인 증가를 가져왔고 이러한 현상은 IT S/W, 건설, 유통 산업군에서 특히 강하게 나타났다. 비정상적인 인터넷 검색량의 증가 이후 2주 간 주가변동성이 증가하였고 3~4주 후에는 오히려 변동성이 감소하는 것을 확인하였다. 이러한 주가 반전현상 역시 IT S/W, 건설, 유통 산업군에서 보다 극단적으로 발생하는 것으로 나타난다.
This study is to evaluate the drought-related bigdata characteristics published from South Korean by developing crawler. The 5 years (2013 ~ 2017) drought-related posted articles were collected from Korean internet search engine 'NAVER' which contains 13 main and 81 local daily newspapers. During the 5 years period, total 40,219 news articles including 'drought' word were found using crawler. To filter the homonyms liken drought to soccer goal drought in sports, money drought economics, and policy drought in politics often used in South Korea, the quality control was processed and 47.8 % articles were filtered. After, the 20,999 (52.2 %) drought news articles of this study were classified into four categories of water deficit (WD), water security and support (WSS), economic damage and impact (EDI), and environmental and sanitation impact (ESI) with 27, 15, 13, and 18 drought-related keywords in each category. The WD, WSS, EDI, and ESI occupied 41.4 %, 34.5 %, 14.8 %, and 9.3 % respectively. The drought articles were mostly posted in June 2015 and June 2017 with 22.7 % (15,097) and 15.9 % (10,619) respectively. The drought news articles were spatiotemporally compared with SPI (Standardized Precipitation Index) and RDI (Reservoir Drought Index) were calculated. They were classified into administration boundaries of 8 main cities and 9 provinces in South Korea because the drought response works based on local government unit. The space-time clustering between news articles (WD, WSS, EDI, and ESI) and indices (SPI and RDI) were tried how much they have correlation each other. The spatiotemporal clusters detection was applied using SaTScan software (Kulldorff, 2015). The retrospective and prospective cluster analyses were conducted for past and present time to understand how much they are intensive in clusters. The news articles of WD, WSS and EDI had strong clusters in provinces, and ESI in cities.
본 연구의 목적은 인공지능의 딥러닝을 활용하여 소셜미디어에서 공유되는 도시공원 이용자 활동사진을 분류하는 기초 모델을 만드는 것이다. 소셜미디어 데이터는 네이버 검색을 통해 수집된 도시공원 관련 사진들을 수집하여 분류모델에 활용하였다. 도시공원 특성 평가에 활용할 수 있는 지표인 자연성(naturalness), 잠재적 매력성(potential attraction), 활동(activity)을 기반으로 최종 21개의 분류 항목체계를 만들고, 항목별로 네이버에서 공유되는 실제 도시공원 사진을 수집하여 주석이 달린 데이터 세트를 구축했다. 수집한 사진 데이터 세트에 대해 커스텀(cuntom) CNN 모델과 사전 훈련된 CNN의 전이학습 모델을 설계하고 분석하였다. 연구결과, 가장 우수한 성능을 보였던 Xception 전이학습 모델이 최종적으로 도시공원 이용자 활동 이미지 분류모델로 선정되었으며, 그 외 다양한 평가 지표를 통해 모델을 평가했다. 본 연구는 소셜미디어에 공유되는 이용자 사진을 활용하여 도시공원 특성을 평가할 수 있는 지표로서 AI를 구축한 것에 의의가 있다. 딥러닝을 활용한 분류모델은 수동분류에 대한 한계를 보완하고, 대량의 도시공원 사진을 효율적으로 분류할 수 있어서 향후 도시공원의 모니터링 및 관리에 활용할 수 있는 유용한 방법이라고 할 수 있다.
집단지성을 이용한 지식검색 서비스는 개방적 구조와 축적된 자료를 공유할 수 있다는 커뮤니티적인 특성으로 큰 인기를 얻고 있다. 하지만 방대한 지식공유 속에서 사용자가 진정으로 원하는 답변 획득은 점점 더 어려워지고 있다. 최근 알고리즘에서 가장 정교하다고 평가 받는 구글을 통해 상위에 랭크된 검색 결과들 중에는 집단지성을 통해 구축된 위키피디아, 야후 Q/A와 같은 소셜 검색엔진의 검색 결과들이 상당수 존재한다. 본 논문은 대부분의 질문은 인간으로부터 문제해결의 실마리를 얻을 수 있다는 점과 온라인상의 사용자에 대한 연구를 통해 지식검색 서비스 사용자 중 영향력 자를 찾는 것에 목적을 둔다. 이에 국내 소셜 검색엔진의 대표인 네이버 지식iN을 중심으로 지식검색내의 사용자 활동성과 신뢰성을 소셜 네트워크 기반으로 정의하고, 사용자간의 관계를 중앙성으로 분석하는 영향력 지수 알고리즘을 제안한다. 제안된 알고리즘을 통한 영향력 지수는 지식검색 서비스에서 문제 해결의 실마리를 가진 사용자를 랭킹화 함으로써 질문에 적합하고신뢰성 있는 답변을 하는 사용자를 분별하는 지표가 되며 이를 바탕으로 지식검색 서비스내의 영향력 자를 식별 가능하게 된다. 이는 지식검색 서비스사용자의 최대 목적인 사용자가필요로 하는 정보와 지식을 보다 용이하게 획득 가능케 함으로써 검색 만족도 향상에 큰 기여를 할 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.