• Title/Summary/Keyword: Naveir-Stokes equation

Search Result 2, Processing Time 0.023 seconds

THE USE OF ITERATIVE METHODS FOR SOLVING NAVEIR-STOKES EQUATION

  • Behzadi, Shadan Sadigh;Fariborzi Araghi, Mohammad Ali
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.1_2
    • /
    • pp.381-394
    • /
    • 2011
  • In this paper, a Naveir-Stokes equation is solved by using the Adomian's decomposition method (ADM), modified Adomian's decomposition method (MADM), variational iteration method (VIM), modified variational iteration method (MVIM), modified homotopy perturbation method (MHPM) and homotopy analysis method (HAM). The approximate solution of this equation is calculated in the form of series which its components are computed by applying a recursive relation. The existence and uniqueness of the solution and the convergence of the proposed methods are proved. A numerical example is studied to demonstrate the accuracy of the presented methods.

Application of k-w turbulence model to the analysis of the flow through a single stage axial-flow compressor (단단 축류압축기 유동해석에 대한 k-w 난류모델의 응용)

  • Lee, Joon-Suk;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.3 s.8
    • /
    • pp.7-11
    • /
    • 2000
  • A numerical study based on the three-dimensional thin-layer Navier-Stokes solver is carried out to analyze the flowfield through a single stage transonic compressor. Explicit fout-step Runge-Kutta scheme with spatially variable time step and implicit residual smoothing is used. The governing equations we discretized with explcit finite difference method. Mired-out average method is used at the interface between rotor and stator. And, an artificial dissipation model is used to assure the stability of solution. The results with k-w turbulence model were compared to the results with Baldwin-Lomax model, and physical phenomena of transonic compressor are presented. The two turbulence models give the results that show reasonably good agreements with experimental data.

  • PDF