• Title/Summary/Keyword: Naval Standard

Search Result 283, Processing Time 0.016 seconds

Examination of Root Causes of Buckling in the Stern Structure of an Oil Tanker using Numerical Modeling (수치해석 모델링을 이용한 유조선 선미부 구조에 발생한 좌굴 발생 원인 검토)

  • Myung-Su Yi;Joo-Shin Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.7
    • /
    • pp.1259-1266
    • /
    • 2022
  • Recently, due to the specialization of structural design standards and evaluation methods, the classification rules are being integrated. A good example is the common international rules (CSR). However, detailed regulations are presented only for the cargo hold area where the longitudinal load is greatly applied, and no specific evaluation guidelines exist for the bow and stern structures. Structural design of the mentioned area is carried out depending on the design experience of the shipbuilder, and because no clear standard exists even in the classification, determining the root cause is difficult even if a structural damage problem occurs. In this study, an engineering-based solution was presented to identify the root cause of representative cases of buckling damage that occurs mainly in the stern. Buckling may occur at the panel wall owing to hull girder bending moment acting on the stern structure, and the plate thickness must be increased or vertical stiffeners must be added to increase the buckling rigidity. For structural strength verification based on finite element analysis modeling, reasonable solutions for load conditions, boundary conditions, modeling methods, and evaluation criteria were presented. This result is expected to be helpful in examining the structural strength of the stern part of similar carriers in the future.

Design of Ship-type Floating LiDAR Buoy System for Wind Resource Measurement inthe Korean West Sea and Numerical Analysis of Stability Assessment of Mooring System (서해안 해상풍력단지 풍황관측용 부유식 라이다 운영을 위한 선박형 부표식 설계 및 계류 시스템의 수치 해석적 안정성 평가)

  • Yong-Soo, Gang;Jong-Kyu, Kim;Baek-Bum, Lee;Su-In, Yang;Jong-Wook, Kim
    • Journal of Navigation and Port Research
    • /
    • v.46 no.6
    • /
    • pp.483-490
    • /
    • 2022
  • Floating LiDAR is a system that provides a new paradigm for wind condition observation, which is essential when creating an offshore wind farm. As it can save time and money, minimize environmental impact, and even reduce backlash from local communities, it is emerging as the industry standard. However, the design and verification of a stable platform is very important, as disturbance factors caused by fluctuations of the buoy affect the reliability of observation data. In Korea, due to the nation's late entry into the technology, a number of foreign equipment manufacturers are dominating the domestic market. The west coast of Korea is a shallow sea environment with a very large tidal difference, so strong currents repeatedly appear depending on the region, and waves of strong energy that differ by season are formed. This paper conducted a study examining buoys suitable for LiDAR operation in the waters of Korea, which have such complex environmental characteristics. In this paper, we will introduce examples of optimized design and verification of ship-type buoys, which were applied first, and derive important concepts that will serve as the basis for the development of various platforms in the future.

A Study on the Structural Reinforcement of the Modified Caisson Floating Dock (개조된 케이슨 플로팅 도크의 구조 보강에 대한 연구)

  • Kim, Hong-Jo;Seo, Kwang-Cheol;Park, Joo-Shin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.1
    • /
    • pp.172-178
    • /
    • 2021
  • In the ship repair market, interest in maintenance and repair is steadily increasing due to the reinforcement of prevention of environmental pollution caused by ships and the reinforcement of safety standards for ship structures. By reflecting this effect, the number of requests for repairs by foreign shipping companies increases to repair shipbuilders in the Southwest Sea. However, because most of the repair shipbuilders in the southwestern area are small and medium-sized companies, it is difficult to lead to the integrated synergy effect of the repair shipbuilding companies. Moreover, the infrastructure is not integrated; hence, using the infrastructure jointly is a challenge, which acts as an obstacle to the activation of the repair shipbuilding industry. Floating docks are indispensable to operating the repair shipbuilding business; in addition, most of them are operated through renovation/repair after importing aging caisson docks from overseas. However, their service life is more than 30 years; additionally, there is no structure inspection standard. Therefore, it is vulnerable to the safety field. In this study, the finite element analysis program of ANSYS was used to evaluate the structural safety of the modified caisson dock and obtain additional structural reinforcement schemes to solve the derived problems. For the floating docks, there are classification regulations; however, concerning structural strength, the regulations are insufficient, and the applicability is inferior. These insufficient evaluation areas were supplemented through a detailed structural FE-analysis. The reinforcement plan was decided by reinforcing the pontoon deck and reinforcement of the side tank, considering the characteristics of the repair shipyard condition. The final plan was selected to reinforce the side wing tank through the structural analysis of the decision; in addition, the actual structure was fabricated to reflect the reinforcement plan. Our results can be used as reference data for improving the structural strength of similar facilities; we believe that the optimal solution can be found quickly if this method is used during renovation/repair.