• Title/Summary/Keyword: Naval Ships

Search Result 1,231, Processing Time 0.026 seconds

On the Influence of End Plates upon the Tip Vortex Cavitation Characteristics of a Fin Stabilizer (안정기 핀의 팁 보오텍스 캐비테이션 특성에 미치는 날개 끝판의 효과)

  • Seo, Dae-Won;Kim, Joung-Hyun;Lee, Seung-Hee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.1
    • /
    • pp.18-28
    • /
    • 2008
  • Fins are widely used for roll stabilization of passenger ferries and high performance naval ships, among others. In the present study, numerical simulations are performed to investigate the influence of end-plates upon the cavitation characteristics of a stabilizer fin for various angles of attack and speeds and the results are verified through a series of model experiments. It is found that a considerable retardation in tip vortex cavitation can be achieved with attachment of end-plates at the tip of the stabilizer fin. The results can be utilized for the design of stabilizer fins as well as the development of high performance control devices for ships.

Approximate Analysis of Shock Response for Ship Hull Girder (선체거더 충격응답의 근사해석)

  • Song, C.T.;Park, B.W.;An, C.W.;Cho, Y.S.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.2
    • /
    • pp.75-84
    • /
    • 1996
  • The structural response of naval surface ships subjected to underwater shock loadings is a very important problem in viewpoint ship survivability. In practice, among others the case of noncontact underwater explosions is the only one shock loading considered in designing naval surface ships to resist underwater explosions. In orator to efficiently design naval surface ships and their equipment to resist such shock loadings it seems necessary to prepare theoretical analysis tools and/or empirical design criteria which can predict the three dimensional transmission of shock waves. This paper describes a simplified method to analyse shock responses for ship hull girder, which uses a loading function to approximate the shock loadings on ship structures due to noncontact underwater explosions. A couple of examples to apply this method are provided.

  • PDF

A Numerical Study for Design of a Fixed Type Fin Stabilizer Utilizing the Coanda Effect (콴다 효과를 적용한 고정식 핀 안정기 설계를 위한 수치적 연구)

  • Seo, Dae-Won;Lee, Seung-Hee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.2
    • /
    • pp.113-120
    • /
    • 2011
  • Fins are widely used for roll stabilization of passenger ferries and high performance naval ships, among others. The Coanda effect is noticeable when a jet stream is applied tangentially to a curved wing surface since the jet can augment the lift by increasing the circulation. The Coanda effect has been found useful in various fields of aerodynamics and speculated to have practical applicability in marine hydrodynamics where various control surfaces are used to control motions of ships and the other offshore structures. In the present study, numerical computations have been performed to find proper jet momentum coefficients $C_j$ and trailing edge shapes suitable for the application of the Coanda effect to a stabilizer fin. The results show that the lift coefficient of the modified Coanda fin at the zero angle of attack ${\alpha}$ identically coincides with that of the original fin at ${\alpha}\;=\;25^{\circ}$ when Coanda jet is supplied at the rate of $C_j$ = 0.1. It is also shown that a fixed type fin stabilizer utilizing the Coanda effect can be implemented without changing the fin angle to actively control the motions of ships and the other offshore structures.

Development of On-Board Survival Time Estimation System for Ships and Naval Vessels (탑재형 선박 및 함정의 생존시간 추정시스템 개발)

  • Hwang, Ho-Jin;Gong, In-Young;Lee, Gyeong-Jung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.5
    • /
    • pp.725-731
    • /
    • 2010
  • Damages of ships and naval vessels due to accidents and attacks would arouse enormous loss of lives and properties. To prevent maritime accidents is the best, and many researches have been achieved. But maritime accidents occurs continuously and to minimize casualties is considered as the second best. This paper has focused on the method and implementation of survival time estimation system for ships(STES system). The developed STES system provides plain and easy operations to get the survival time of damaged ship and naval vessel. The officers feed damaged conditions simply and quickly, and grasp instantly the survival time for damages. It would be attained by query and retrieval of survival time DB collected in a design process. We also check an effectivity of the system by practical applications.

Effect of waterjet intake plane shape on course-keeping stability of a planing boat

  • Park, Kyurin;Kim, Dong Jin;Kim, Sun Young;Seo, Jeonghwa;Suh, Innduk;Rhee, Shin Hyung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.585-598
    • /
    • 2021
  • The course-keeping stability of a high speed planing boat should be considered at the design stage for its safe operations. The shape of waterjet intake plane is one of important design parameters of a waterjet propelled planing boat. That has significant influences on the stern flow patterns and pressure distributions. In this study, the effects of the waterjet intake shapes of planing boats on the course-keeping stabilities are investigated. Two kinds of designed planing boats have the same dimensions, but there are differences in waterjet intake plane shapes. Captive and free-running model tests, Computational Fluid Dynamics (CFD) analyses are carried out in order to estimate their hydrodynamic performances including course-keeping stabilities. The results show that the flat and wide waterjet intake plane of the initially designed boat makes the course-keeping stability worse. The waterjet intake shape is redesigned to improve the course-keeping stability. The improved performances are confirmed by free-running model tests and full-scale trials.

Estimation of Machinery Weights of the Medium and Small-sized Ships (중소형선(中小型船)의 기관부중량추정(機關部重量推定))

  • Keuk-Chun,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.3 no.1
    • /
    • pp.25-32
    • /
    • 1966
  • For preliminary estimation of ships' machinery weights, many papers giving well-judged data and discussions for rational method of estimation, such as [1], [2], [3], [4], [5], [6], are available, however, they are mostly concerned with large ships propelled by power more than about 2, 000 horsepower. Regarding the medium and small-sized ships, as far as the author is aware, fragmental data and vague discussions found in various technical literature are the all available. In this paper, available data concerned with machinery weights of commercial ships propelled by direct-drive diesel plants of power below 3, 000 horsepower with single screw propeller are collected and analysed to obtain systematic data Fig. 1 and Fig. 2 as weight to power ratio versus power per shaft diagrams together with suplementary data Fig. 1 and Fig. 3. Influences of various factor such as revolutions per minute, mean effective pressure, type and construction of the main units on machinery weights are also investigated in detail to give a better guidance for logical and rational utlization of the proposed diagrams in preliminary estimation of machinery weights.

  • PDF

A Method of the Computer-Aided Preliminary Design of Dry-Cargo Ships (화물선(貨物船)의 초기기본설계(初期基本設計)를 위한 전자계산기(電子計算機)의 이용(利用))

  • J.H.,Hwang;S.J.,Yim;K.C.,Kim;H.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.10 no.1
    • /
    • pp.1-14
    • /
    • 1973
  • In the Department of Naval Architecture, Seoul National University, the development of computer programs for the computer-aided ship design sponsored by the Ministry of Science and Technology has been begun. The project is to be accomplished as a four-year plan, and the results of the works of the first year, preliminary design of dry-cargo ships based on an optimization technique and some fundamental calculations accompanied with the basic design of ships such as calculations of displacement, hydrostatic characteristics of hull forms, stability, floodable length, load line and longitudinal section modulus, are given in the Report R-72-9[9] published by the sopnsor for the public interests. In this paper, the philosophy and methodological principles with which the preliminary design program given in Appendix II was developed are summerized.

  • PDF